Answer:0.0704 kg
Explanation:
Given
initial Absolute pressure
=210+101.325=311.325



as the volume remains constant therefore



therefore Gauge pressure is 337.44-101.325=236.117 KPa
Initial mass 

Final mass 

Therefore
=0.91-0.839=0.0704 kg of air needs to be removed to get initial pressure back
Actually it's

and it says that the energy of an object (E) is equal to the mass (m) of the object multiplied with the squared speed of light (

). This theory says that mass can be turned into energy and energy can be turned into mass. This is one of Einstein's theory of relativity.
Temperature that will be my answer number 1
Answer:
The horizontal component of the velocity is 188 m/s
The vertical component of the velocity is 50 m/s.
Explanation:
Hi there!
Please, see the figure for a graphic description of the problem. Notice that the x-component of the vector velocity (vx), the y-component (vy) and the vector velocity form a right triangle. Then, we can use trigonometry to obtain the magnitude of vx and vy:
We can find vx using the following trigonometric rule of a right triangle:
cos α = adjacent / hypotenuse
cos 15° = vx / 195 m/s
195 m/s · cos 15° = vx
vx = 188 m/s
The horizontal component of the velocity is 188 m/s
To calculate the y-component we will use the following trigonometric rule:
sin α = opposite / hypotenuse
sin 15° = vy / 195 m/s
195 m/s · sin 15° = vy
vy = 50 m/s
The vertical component of the velocity is 50 m/s.
Answer:
Option B. 6.25 J/S
Explanation:
Data obtained from the question include:
t (time) = 2secs
F (force) = 50N
d (distance) = 0.25m
P (power) =?
The power can be obtained by using the formula P = workdone/time.
P = workdone / time
P = (50 x 0.25)/ 2
P = 6.25J/s