1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Irina18 [472]
4 years ago
6

What is the acceleration of a 0.90g drop of blood in the fingertips at the bottom of the swing?

Physics
1 answer:
Scilla [17]4 years ago
5 0
The acceleration of a 0.90 g drop of blood in the fingertips at the bottom of the swing is the sum of the acceleration of the movement of the finger and the acceleration of gravity. In this case, this is different when the finger goes down, since the acceleration now becomes the difference between the two.
You might be interested in
A parallel-plate vacuum capacitor is connected to a battery and charged until the stored electric energy is . The battery is rem
Viktor [21]

Answer:

A

The energy dissipated in the resistor {U_k} = \frac{U}{k}

B

The energy dissipated in the resistor{U_k} = kU

Explanation:

In order to gain a good understanding of the solution above it is necessary to understand that the concept required to solve the question is energy stored in the parallel plate capacitor.

Initially, take the first case. In that, according to the formula for energy stored in parallel plate capacitor with the dielectric inserted between the two plates, find the energy stored. Then, find the energy stored in the parallel plate capacitor when no dielectric is present. Then, write the equation of energy stored in the capacitor with the dielectric present in the form of the energy stored in the capacitor without the dielectric present. The equation must not be in the form of voltage as battery is removed in this case.

For part B, use the equation of the energy dissipated in the resistor. Write it in the form of the equation for energy stored in the parallel plate capacitor without dielectric in it. The equation must be in the form of voltage as battery is kept connected. Looking at the fundamentals

The energy stored in the parallel plate capacitor with the dielectric is given by,

                 U _k = \frac{1}{2} \frac{q ^2}{kC}

Here, the energy stored in the capacitor will be equal to the energy dissipated in the resistor. In this equation, Uk is the energy dissipated in the resistor, q is charge, k is the dielectric constant, and C is the capacitance.

Now, the equation of the energy stored in the parallel plate capacitor without dielectric is,

​ U= \frac{1}{2} \frac{q ^2}{C}

In this equation, U is the energy stored in the parallel plate capacitor without dielectric, q is charge, and C is the capacitance.

For part B, the battery is still connected. Thus, the equation q = CV is used to modify the above equation.

Thus, the energy stored in the parallel plate capacitor with the dielectric is given by,

U_ k = \frac{1}{2} \frac{k ^{2} C^ 2 V ^2}{kC} \\\\= \frac{1}{2}  kCV ^2

In this equation, Uk is the energy dissipated in the resistor, V is voltage, k is the dielectric constant, and C is the capacitance.

The equation of the energy stored in the parallel plate capacitor without dielectric is,

U= \frac{1}{2} \frac{C^ 2 V ^2}{C} \\\\= \frac{1}{2} CV ^2

In this equation, U is the energy dissipated in the resistor, V is voltage, k is the dielectric constant, and C is the capacitance.

(A)

The equation for energy dissipated in the resistor is,

 U _k = \frac{1}{2} \frac{q ^2}{kC}

Substitute U = \frac{1}{2}\frac{{{q^2}}}{C}  in the equation of {U_k}

U _k = \frac{1}{2} (\frac{1}{k} )\frac{q ^2}{C} \\\\= (\frac{1}{k} ) \frac{q^2}{C}\\\\ U_{k} = \frac{U}{k}

Note :

If the resistance relates to the capacitor, the energy stored in the capacitor is dissipated through the resistance. Thus, by substituting the equation of U, the expression is found out.

(B)

The equation for energy dissipated in the resistor is

U_{k} = \frac{1}{2}kCV^2

Here, V is voltage in the circuit.

Substitute U =\frac{1}{2} CV^2 in the equation of {U_k}

So,

        U_{k} = \frac{1}{2} kCV^2\\

       = k(\frac{1}{2} CV^2)

       U_{k} = kU

4 0
3 years ago
A 600W toaster, 1200W iron and a 100W bulb are all connected to household 120V circuit. a) find the current drawn by each applia
Advocard [28]

Answer:

(a) %a, 10 A, 0.833 A

(b) 12 ohm

(c) $22.8

Explanation:

Power of toaster, P1 = 600 W

Power of iron, P2 = 1200 W

Power of bulb, P3 = 100 W

V = 120 V

As they are in household circuit, so they are connected in parallel, so the voltage is same for all.

(a) Use the formula P = V x i

Current in toaster, i1 = P1 / V = 600 / 120 = 5 A

Current in iron, i2 = P2 / V = 1200 / 120 = 10 A

Current in bulb, i3 = P3 / V = 100 / 120 = 0.833 A

(b) Resistance of heating element of iron is R2.

V = i2 x R2

120 = 10 x R2

R2 = 12 ohm

(c) Total energy consumed in 24 hours for 5 days

                              = (600 + 1200 + 100) x 24 x 5 = 228000 Wh = 228 KWh

Cost of 1 KWh = $0.1

Cost of 228 KWh = 0.1 x 228 = $22.8

8 0
3 years ago
Read 2 more answers
Describe three important ways we use the electromagnetic spectrum in our everyday lives.
OlgaM077 [116]

Answer:

We use X-rays to help the injured, Radiowaves to communicate or entertain, and Visible light to see.

5 0
3 years ago
As a liquid is added to a beaker, the pressure exerted by the liquid on the bottom
abruzzese [7]

Answer: c) increases

Explanation:

Pressure increases with decreasing height

4 0
3 years ago
The force that keeps objects moving in a circle is called centrifugal force.<br> True<br> False
Doss [256]

Answer: False

Explanation:

3 0
3 years ago
Read 2 more answers
Other questions:
  • What is the role of the air spaces in insulating materials? Select all that apply.
    9·2 answers
  • A 4.50-g bullet, traveling horizontally with a velocity of magnitude 400 m/s, is fired into a wooden block with mass 0.650 kg ,
    10·1 answer
  • Estimate the peak wavelength for radiation from ice at 273 k.
    10·1 answer
  • Salina’s internal desire to exercise is called
    5·2 answers
  • Match the description to the property.
    8·1 answer
  • At a pressure 43 kPa, the gas in a cylinder has a volume of 12 liters. Assuming temperature remains the same, if the volume of t
    13·1 answer
  • The cheetah is one of the fastest accelerating animals, for it can go from rest to 34.5 m/s in 3.57 s. If its mass is 112 kg, de
    13·1 answer
  • What happens to the the eardrum, a thin membrane at the end of the ear canal, when it is struck by a sound wave?
    14·1 answer
  • What is the kinetic energy of a 14kg object traveling at 10m/s
    15·1 answer
  • Can someone please answer this, ill give you brainliest Would be very appreciated.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!