Given:
F = 39 N, the force applied
t = 2 s, the time interval in which the force is applied.
By definition, the impulse is

Answer: 78 N-s
same but who knows how 2021 might go
Answer:
a) 24.4 Ω
b) 4.92 A
c) 495.9 W
d)
c. It will be larger. The resistance will be smaller so the current drawn will increase, increasing the power.
Explanation:
b)
The formula for power is:
P = IV
where,
P = Power of heater = 590 W
V = Voltage it takes = 120 V
I = Current Drawn = ?
Therefore,
590 W = (I)(120 V)
I = 590 W/120 V
<u>I = 4.92 A</u>
<u></u>
a)
From Ohm's Law:
V = IR
R = V/I
Therefore,
R = 120 V/4.92 A
<u>R = 24.4 Ω</u>
<u></u>
c)
For constant resistance and 110 V the power becomes:
P = V²/R
Therefore,
P = (110 V)²/24.4 Ω
<u>P = 495.9 W</u>
<u></u>
d)
If the resistance decreases, it will increase the current according to Ohm's Law. As a result of increase in current the power shall increase according to formula (P = VI). Therefore, correct option is:
<u>c. It will be larger. The resistance will be smaller so the current drawn will increase, increasing the power.</u>
<span>Th find the average speed of a trip we need to dived the total distance by the total time.
Let's find the total distance d.
d = (300 mi/h)(2.00 h) + 750 miles
d = 600 miles + 750 miles
d = 1350 miles
The total distance is 1350 miles
Let's find the total time t.
t = 2.00 hours + (750 mi / 250 mi/h)
t = 2.00 hours + 3.00 hours
t = 5.00 hours
The total time of the trip is 5.00 hours.
We can find the average speed.
d / t = 1350 miles / 5.00 hours
d / t = 270 miles/ hour
The average speed of the trip is 270 mi/h
(Note that the direction does not matter when we find the average speed.)</span>
Answer:
12 km/h
Explanation:
Average Speed = Distance / Time (or rate)
Pick a point on the graph for Ian and plug in values.
For example, 20 minutes -> 4km
Hence, Average speed = 4km ÷ 20 minutes = 0.2 km/min
0.2 km/min × 60 = 12 km/h