Answer:
Explanation:
The relation between equilibrium constant and Ecell is given below .
E⁰cell = (RT / nF ) lnK , F is faraday constant T is 273 + 25 = 298 K
E⁰cell = 1.46 - 1.21 = .25 V
n = 2
Putting the values
.25 = (8.314 x 298 lnK) / (2 x 96485 )
lnK = 19.47
K = 2.85 x 10⁸
2 )
Change in free energy Δ G
Δ G ⁰ = nE⁰ F
n = 4
E⁰ = .4 + .83 = 1.23 V
Δ G ⁰= 4 x 1.23 x 96485
= 474706 J / mol
3 )
E⁰cell = (RT / nF ) lnK
n = 2
1.78 = 8.314 x 298 lnK / 2 x 96485
lnK = 138.638
K = 1.62 x 10⁶⁰
The metric system is used because it is based on the number 10. Ten is easy to use for mathematical operations and conversions.
It is also easy to use for scientific notation when you are referring to powers of ten. There are extremely large and extremely small numbers in science. Thus, scientific notation allows for accurate abbreviated ways to symbolize these numbers. For instance, if I were to say 1,000, in scientific notation it would be 1 x 10 ^3. If I was to say 1,000,000, I would scientifically write 1 x 10 ^6.
When heated, particles vibrate faster, thus increasing the distance between one another. The distance between these particles results in changes of state. Therefore, increased molecular motion results in expansion of an object. This works vice versa for cooling. As the vibrations slow down, the particles become closer together. This results in contraction.
The pressures given are the partical pressures of the two gases.
The law of Dalton or of the partial pressures states that the total pressure of a mixture of gases is equal to the sum of the pressures of all the gases.
So, in this case:
Total pressure = pressure of nitrogen + pressure of carbon dioxyde.
Of course both terms must be in the same units.
i have found that the pressures for this problem are:
Pressure of nitrogen = 984 torr
Pressure of carbon dioxyde = 345 torr
Total pressure = 984 torr + 345 torr = 1329 torr.
Now convert to atm: 1 atm = 760 torr
=> 1329 torr * 1 atm / 760 torr = 1.74868 atm ≈ 1.75 atm
Answer: 1.75 atm