well the atomic number is 7 the number of protons is also equal to 7 .
hope this helps
The major groups of minerals includes: carbonate ions and oxides, . In addition to this three groups the following are also the major groups of minerals
native elements
sulfate
sulfides
halides
silicate
nitrate among others such as phosphate and vanadate
<u>Answer:</u> The equilibrium constant for the reaction is 54.47
<u>Explanation:</u>
The equilibrium constant is defined as the ratio of the concentration of products to the concentration of reactants raised to the power of the stoichiometric coefficient of each. It is represented by the term 
The given chemical equation follows:

The expression for equilibrium constant will be:
![K_{eq}=\frac{[HI]^2}{[H_2][I_2]}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BHI%5D%5E2%7D%7B%5BH_2%5D%5BI_2%5D%7D)
We are given:
![[HI]_{eq}=1.3544\times 10^{-2}M](https://tex.z-dn.net/?f=%5BHI%5D_%7Beq%7D%3D1.3544%5Ctimes%2010%5E%7B-2%7DM)
![[H_2]_{eq}=4.5647\times 10^{-3}M](https://tex.z-dn.net/?f=%5BH_2%5D_%7Beq%7D%3D4.5647%5Ctimes%2010%5E%7B-3%7DM)
![[I_2]_{eq}=7.378\times 10^{-4}M](https://tex.z-dn.net/?f=%5BI_2%5D_%7Beq%7D%3D7.378%5Ctimes%2010%5E%7B-4%7DM)
Putting values in above expression, we get:

Hence, the equilibrium constant for the reaction is 54.47
The best way to determine the number of atoms of arsenic in the sample will be to multiply 2.3 by Avagadro's number.
This is because Avagadro's number is the number of particles one mole of any substance has, and its value is 6.02 x 10²³
If the number of moles of a substance are known, then multiplying by Avagadro's number will give the number of particles. In this case, this is 1.38 x 10²⁴.