Adhesion of water to the surface of a material will cause an upward force on the liquid. The surface tension acts to hold the surface intact. Capillary action occurs when the adhesion to the surface material is stronger than the cohesive forces between the water molecules.
The specific heat of the metal is 2.4733 J/g°C.
Given the following data:
- Initial temperature of water = 25.0°C
- Final temperature of water = 29.0°C
- Temperature of metal = 203.0°C
We know that the specific heat capacity of water is 4.184 J/g°C.
To find the specific heat of the metal (J/g°C):
Heat lost by metal = Heat gained by water.
Mathematically, heat capacity or quantity of heat is given by the formula;
<u>Where:</u>
- Q is the heat capacity or quantity of heat.
- m is the mass of an object.
- c represents the specific heat capacity.
- ∅ represents the change in temperature.
Substituting the values into the formula, we have:
Specific heat capacity of metal, c = 2.4733 J/g°C
Therefore, the specific heat of the metal is 2.4733 J/g°C.
Read more: brainly.com/question/18691577
<span>20 bicarbonate ions to 1 carbonic acid molecule
20:1</span>
Answer:
C
Explanation:
Well movement is, reproduction is, responsiveness is, metabolism is, so accumulation would be the answer.