1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mnenie [13.5K]
3 years ago
11

Find a, b, and h. please help

Mathematics
1 answer:
Andrew [12]3 years ago
7 0

Answer:

Not completely sure if this is correct but I got

a: 12

b: 24sqrt2

h: 8sqrt2

Step-by-step explanation:

You might be interested in
Help out dudes!! #38.
Verdich [7]
You earn $15 per lawn. 1 lawn would be $15. 15(1) is 15.
7 lawns would be 15(7), which is 105.
4 0
3 years ago
Read 2 more answers
What is the slope of the line​
Maurinko [17]

Answer:

y2-y1/x2-x1

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Find the derivative of following function.
Aleks04 [339]

Answer:

\displaystyle y' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \tan^2 x + 5x \big) + \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( 2 \sec^2 x \tan x + 5 \big)}{ \big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)} + \frac{2 \cot x \csc^2 x \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2 \big( \sin^2x + 6 \big)} - \frac{2 \cos x \sin x \big( \cos^2 x - 3\sqrt{x}  + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)^2}

General Formulas and Concepts:
<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (cu)' = cu'

Derivative Property [Addition/Subtraction]:
\displaystyle (u + v)' = u' + v'

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Product Rule]:
\displaystyle (uv)' = u'v + uv'

Derivative Rule [Quotient Rule]:
\displaystyle \bigg( \frac{u}{v} \bigg)' = \frac{vu' - uv'}{v^2}

Derivative Rule [Chain Rule]:
\displaystyle [u(v)]' = u'(v)v'

Step-by-step explanation:

*Note:

Since the answering box is <em>way</em> too small for this problem, there will be limited explanation.

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle y = \frac{\cos^2 x - 3\sqrt{x} +6}{\sin^2 x + 6} \times \frac{\tan^2 x + 5x}{\csc^2 x + 3}

<u>Step 2: Differentiate</u>

We can differentiate this function with the use of the given <em>derivative rules and properties</em>.

Applying Product Rule:

\displaystyle y' = \bigg( \frac{\cos^2 x - 3\sqrt{x} + 6}{\sin^2 x + 6} \bigg)' \frac{\tan^2 x + 5x}{\csc^2 x + 3} + \frac{\cos^2 x - 3\sqrt{x} +6}{\sin^2 x + 6} \bigg( \frac{\tan^2 x + 5x}{\csc^2 x + 3} \bigg) '

Differentiating the first portion using Quotient Rule:

\displaystyle \bigg( \frac{\cos^2 x - 3\sqrt{x} + 6}{\sin^2 x + 6} \bigg)' = \frac{\big( \cos^2 x - 3\sqrt{x} + 6 \big)' \big( \sin^2 x + 6 \big) - \big( \sin^2 x + 6 \big)' \big( \cos^2 x - 3\sqrt{x} + 6 \big)}{\big( \sin^2 x + 6 \big)^2}

Apply Derivative Rules and Properties, namely the Chain Rule:

\displaystyle \bigg( \frac{\cos^2 x - 3\sqrt{x} + 6}{\sin^2 x + 6} \bigg)' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \sin^2 x + 6 \big) - \big( 2 \sin x \cos x \big) \big( \cos^2 x - 3\sqrt{x} + 6 \big)}{\big( \sin^2 x + 6 \big)^2}

Differentiating the second portion using Quotient Rule again:

\displaystyle \bigg( \frac{\tan^2 x + 5x}{\csc^2 x + 3} \bigg) ' = \frac{\big( \tan^2 x + 5x \big)' \big( \csc^2 x + 3 \big) - \big( \csc^2 x + 3 \big)' \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2}

Apply Derivative Rules and Properties, namely the Chain Rule again:
\displaystyle \bigg( \frac{\tan^2 x + 5x}{\csc^2 x + 3} \bigg) ' = \frac{\big( 2 \tan x \sec^2 x + 5 \big) \big( \csc^2 x + 3 \big) - \big( -2 \csc^2 x \cot x \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2}

Substitute in derivatives:

\displaystyle y' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \sin^2 x + 6 \big) - \big( 2 \sin x \cos x \big) \big( \cos^2 x - 3\sqrt{x} + 6 \big)}{\big( \sin^2 x + 6 \big)^2} \frac{\tan^2 x + 5x}{\csc^2 x + 3} + \frac{\cos^2 x - 3\sqrt{x} +6}{\sin^2 x + 6} \frac{\big( 2 \tan x \sec^2 x + 5 \big) \big( \csc^2 x + 3 \big) - \big( -2 \csc^2 x \cot x \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2}

Simplify:

\displaystyle y' = \frac{\big( \tan^2 x + 5x \big) \bigg[ \big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \sin^2 x + 6 \big) - 2 \sin x \cos x \big( \cos^2 x - 3\sqrt{x} + 6 \big) \bigg]}{\big( \sin^2 x + 6 \big)^2 \big( \csc^2 x + 3 \big)} + \frac{\big( \cos^2 x - 3\sqrt{x} +6 \big) \bigg[ \big( 2 \tan x \sec^2 x + 5 \big) \big( \csc^2 x + 3 \big) + 2 \csc^2 x \cot x \big( \tan^2 x + 5x \big) \bigg] }{\big( \csc^2 x + 3 \big)^2 \big( \sin^2 x + 6 \big)}

We can rewrite the differential by factoring and common mathematical properties to obtain our final answer:

\displaystyle y' = \frac{\big( -2 \cos x \sin x - \frac{3}{2\sqrt{x}} \big) \big( \tan^2 x + 5x \big) + \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( 2 \sec^2 x \tan x + 5 \big)}{ \big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)} + \frac{2 \cot x \csc^2 x \big( \cos^2 x - 3\sqrt{x} + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big)^2 \big( \sin^2x + 6 \big)} - \frac{2 \cos x \sin x \big( \cos^2 x - 3\sqrt{x}  + 6 \big) \big( \tan^2 x + 5x \big)}{\big( \csc^2 x + 3 \big) \big( \sin^2 x + 6 \big)^2}

∴ we have found our derivative.

---

Learn more about derivatives: brainly.com/question/26836290

Learn more about calculus: brainly.com/question/23558817

---

Topic: Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

8 0
2 years ago
Read 2 more answers
Can u guys help me please ?‍♀️
Over [174]

Answer:

r = 8 ft

Step-by-step explanation:

The formula for circumference of a circle is

C = 2 * pi *r

We know the circumference is 16 pi

16 pi = 2 pi r

Divide each side by 2pi

16 pi /2 pi = 2 pi r / (2pi)

8 = r

7 0
3 years ago
Solve the following system of equations algebraically:<br> y = x2 - 6x + 9<br> y = -9x + 19
Ratling [72]
{(-5,64), (2,1)}

linear equation: y = -9x + 19
quadratic equation: y = x² - 6x + 9

Substitute the y in the quadratic equation by the its value in the linear equation.

-9x + 19 = x² - 6x + 9
      -  19               - 19    *subtract 19 to both sides
-9x         = x² - 6x -10
+9x              + 9x            *add 9x to both sides
0            = x² + 3x - 10
0            = (x + 5) (x - 2) *Factor

Set each factor = 0 and solve
x + 5 = 0    ;      x - 2 = 0
x = -5         ;      x = 2

Find the corresponding value of y using the linear equation.
y = -9x + 19

x = -5                              x = 2
y = -9(-5) + 19               y = -9(2) + 19
y = 45 + 19                    y = -18 + 19
y = 64                            y = 1

(-5,64)                              (2,1)

Check each value on each equation.
y = x² - 6x + 9
(-5,64)                                                  (2,1)
64 = (-5)² - 6(-5) + 9                          1 = 2² - 6(2) + 9
64 = 25 + 30 + 9                                1 = 4 - 12 + 9
64 = 64                                               1 = 1

y = -9x + 19
64 = -9(-5) + 19                                  1 = -9(2) + 19
64 = 45 + 19                                      1 = -18 + 19
64 = 64                                              1 = 1

{(-5,64), (2,1)}

3 0
3 years ago
Other questions:
  • You need a ladder that will reach up to 25 foot tall house when placed 10 feet away from the house. How tall does the ladder nee
    7·1 answer
  • Find the value of each variable. Line / is a tangent
    13·1 answer
  • You start a new job. After w weeks, you have (10w+120) dollars in your savings account and (45w+25) dollars in your checking acc
    14·1 answer
  • Common factors of 18w and 30wz
    8·2 answers
  • What is the product of 2X plus 3 and 4X squared minus 5X plus 6
    12·1 answer
  • Plz help me its do today
    9·2 answers
  • Brady recorded the number and color of cars in the parking lot. 45% of the cars in the parking lot were white. If Brady counted
    10·2 answers
  • Can I get some help???
    7·1 answer
  • Heo is renting two kinds of tables for his party. One type of table
    6·1 answer
  • Find the area of the shaded region 6cm 150°
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!