<span>The moment of inertia of the large sphere will be twice that of the smaller sphere.
The formula for the moment of inertia for a solid sphere is:
I = (2/5)mr^2
where
I = moment of inertia
m = mass
r = radius
Since both spheres have the same diameter, they also have the same radius, so the only change is their mass. And the moment of inertia is directly proportional to their mass as shown by the above formula. So the sphere with twice the mass will have twice the moment of inertia, or 2 times.</span>
C, they didn't know any better
It is an important part of many cells and processes such as amino acids, proteins and even our DNA. It is also needed to make chlorophyll in plants, which is used in photosynthesis to make their food.
Hope this helps! ;)
The force is 2.0 N east
Explanation:
The impulse exerted by a force is defined as the product between the force itself and the time interval during which the force is applied. Mathematically, it is equal to the change in momentum experienced by the object on which the force is acting:

Where
I is the impulse
F is the force
is the time interval during which the force is applied
is the change in momentum
In this problem,
is the time interval
(east) is the impulse
Therefore, the magnitude of the force is

And the direction is the same as the impulse (east).
Learn more about impulse and change in momentum:
brainly.com/question/9484203
#LearnwithBrainly
Around 80 percent of the mass of the universe is made up material known as "Dark matter". It does not emit light or energy but the influence of it can be detected or observed gravitationally. Motions of stars and galaxy tell us how much mater there is, but somehow the speed of rotation of galaxy does not add up to its mass alone, there is a certain amount of matter really not accounted for. Dark matter maybe made up of non-baryonic matter, or perhaps what scientist called the WIMPS or (weakly interacting massive particles.)