Answer:
The magnitude of the acceleration is 
The direction is
i.e the negative direction of the z-axis
Explanation:
From the question we are that
The mass of the particle 
The charge on the particle is 
The velocity is 
The the magnetic field is 
The charge experienced a force which is mathematically represented as

Substituting value



Note :

Now force is also mathematically represented as

Making a the subject

Substituting values



*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆**☆*――*☆*――*☆*――*☆
Answer: Something that's vibrating, and you also need medium for those vibrations to start in.
I hope this helped!
<!> Brainliest is appreciated! <!>
- Zack Slocum
*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆*――*☆**☆*――*☆*――*☆*――*☆
Answer:
v = 22.54 mph.
Explanation:
Given that,
Distance moved, d = 200 m
Time, t = 19.8 s
We need to find the runner's average speed.
We know that,
1 mile = 1609.34 m
200 m = 0.124 miles
19.8 seconds = 0.0055 h
So,
Speed = distance/time

So, the runner's average speed is 22.54 mph.
Answer:
0.00970 s
Explanation:
The centripetal force that causes the charge to move in a circular motion = The force exerted on the charge due to magnetic field
Force due to magnetic field = qvB sin θ
q = charge on the particle = 5.4 μC
v = velocity of the charge
B = magnetic field strength = 2.7 T
θ = angle between the velocity of the charge and the magnetic field = 90°, sin 90° = 1
F = qvB
Centripetal force responsible for circular motion = mv²/r = mvw
where w = angular velocity.
The centripetal force that causes the charge to move in a circular motion = The force exerted on the charge due to magnetic field
mvw = qvB
mw = qB
w = (qB/m) = (5.4 × 10⁻⁶ × 2.7)/(4.5 × 10⁻⁸)
w = 3.24 × 10² rad/s
w = 324 rad/s
w = (angular displacement)/time
Time = (angular displacement)/w
Angular displacement = π rads (half of a circle; 2π/2)
Time = (π/324) = 0.00970 s
Hope this Helps!!!