Answer:
I think it is the Federal Pell Grant Program.
Explanation:
In contrast to quiet eruptions, other volcanoes erupt explosively. Mount St. Helens, for instance, spewed lava high in the air when it erupted. Two things control the type of eruption: how much water vapor and other gasses are in the magma and whether the magma is basaltic or granitic. Basaltic magma tends to ooze out gently in a thin, quiet eruption, while granitic magma is thicker and becomes trapped inside the volcano's vents. Once the pressure grows enough to force out the magma, it explodes.
Thank for joining brainly
Have a good day
Answer:
The speed of water flow inside the pipe at point - 2 = 34.67 m / sec
Explanation:
Given data
Diameter at point - 1 = 3.2 cm
Velocity at point - 1 = 1.1 m / sec = 110 cm / sec
Diameter at point - 2 = 0.57 cm
Velocity at point - 2 = ??
We know that from the continuity equation the rate of flow is constant inside a pipe between two points.
Thus
⇒
×
=
× 
⇒
×
×
=
⇒
×
=
× 
⇒
× 110 =
× 
⇒
= 3467 cm / sec
⇒
= 34.67 m / sec
Thus the speed of water flow inside the pipe at point - 2 = 34.67 m / sec
The electric force on the proton is:
F = Eq
F = electric force, E = electric field strength, q = proton charge
The gravitational force on the proton is:
F = mg
F = gravitational force, m = proton mass, g = gravitational acceleration
Since the electric force and gravitational force balance each other out, set their magnitudes equal to each other:
Eq = mg
Given values:
q = 1.60×10⁻¹⁹C, m = 1.67×10⁻²⁷kg, g = 9.81m/s²
Plug in and solve for E:
E(1.60×10⁻¹⁹) = 1.67×10⁻²⁷(9.81)
E = 1.02×10⁻⁷N/C
Power is defined as the rate of doing work or the work per unit of time. The first step to solve this problem is by calculating the work which can be determined by the equation:
W = Fd
where:
F = force exerted = ma
d = distance traveled
m = mass of object
a = acceleration
Acceleration is equivalent to the gravitational constant (9.81 m/s^2) if the force exerted has a vertical direction such as lifting.
W = Fd = mad = 63(9.81)(7) = 4326.21 Joules
Now that we have work, we can calculate power.
P = W/t = 4325.21 J / 5 seconds = 865.242 J/s or watts
Convert watts to horsepower (1 hp = 745.7 watts)
P = 865.242 watts (1hp/745.7 watts) = 1.16 hp