First, create an illustration of the motion of the two cars as shown in the attached picture. The essential equations used is
For constant acceleration:
a = v,final - v,initial /t
The solutions is as follows:
a = v,final - v,initial /t
3.8 = (v - 0)/2.8 s
v = 10.64 m/s After 2.8 seconds, the speed of the blue car is 10.64 m/s.
My response to question (a) and (b) is that all of the element of the rope need to aid or support the weight of the rope and as such, the tension will tend to increase along with height.
Note that It increases linearly, if the rope is one that do not stretch. So, the wave speed v= √ T/μ increases with height.
<h3>How does tension affect the speed of a wave in a rope?</h3>
The Increase of the tension placed on a string is one that tends to increases the speed of a wave, which in turn also increases the frequency of any given length.
Therefore, My response to question (a) and (b) is that all of the element of the rope need to aid or support the weight of the rope and as such, the tension will tend to increase along with height. Note that It increases linearly, if the rope is one that do not stretch. So, the wave speed v= √ T/μ increases with height.
Learn more about tension from
brainly.com/question/2008782
#SPJ4
See full question below
(a) If a long rope is hung from a ceiling and waves are sent up the rope from its lower end, why does the speed of the waves change as they ascend? (b) Does the speed of the ascending waves increase or decrease? Explain.
Mechanical advantage of a machine is the ratio of the output force over the input force or M=Fo/Fi. Since M=1, Fi=Fo, or the input force is equal to the output force. This means that to raise the refrigerator that weighs 900 N, we need the same input force of 900 N, or Fo=Fi=900 N.
Answer: alpha particle. i think
Explanation:
Answer:
230kg would be the best answer
Explanation: