Answer:
11
Explanation:
3 + 8 = 11
20 character minimum, here you go.
Answer:
- [HOCl] = 0.00909 mol/liter
- [H₂O] = 0.03901 mol/liter
- [Cl₂O] = 0.02351 mol/liter
Explanation:
<u />
<u>1. Chemical reaction:</u>
<u>2. Initial concentrations:</u>
i) 1.3 g H₂O
- Number of moles = 1.3g / (18.015g/mol) = 0.07216 mol
- Molarity, M = 0.07216 mol / 1.5 liter = 0.0481 mol/liter
ii) 2.2 g Cl₂O
- Number of moles = 2.2 g/ (67.45 g/mol) = 0.0326 mol
- Molarity = 0.0326mol / 1.5 liter = 0.0217 mol/liter
<u>3. ICE (Initial, Change, Equilibrium) table</u>
I 0.0481 0.0326 0
C -x -x +x
E 0.0481-x 0.0326-x x
<u />
<u>4. Equilibrium expression</u>
<u />
<u>5. Solve:</u>
Use the quadatic formula:
The positive result is x = 0.00909
Thus the concentrations are:
- [HOCl] = 0.00909 mol/liter
- [H₂O] = 0.0481 - 0.00909 = 0.03901 mol/liter
- [Cl₂O] = 0.0326 - 0.00909 = 0.02351 mol/liter
Using a more concentrated HCl solution and Crushing the CaCO₃ into a fine powder makes the reaction to occur at a faster rate.
<u>Explanation:</u>
CaCO₃(s) + 2HCl(aq) → CaCl₂(aq) + H₂O(aq) + CO₂(g)
When calcium carbonate reacts with hydrochloric acid, it gives out carbon-dioxide in the form of bubbles and there is a formation of calcium chloride in aqueous medium.
The rate of the reaction can be increased by
- Using a more concentrated HCl solution
- Crushing the CaCO₃ into a fine powder
When concentrated acid is used instead of dilute acid then the reaction will occur at a faster rate.
When CaCO₃ is crushed into a fine powder then the surface area will increases thereby increasing the rate of the reaction.
Answer:
0.576M and 0.655m
Explanation:
<em>...Dissolves 15.0g of styrene (C₈H₈) in 250.mL of a solvent with a density of 0.88g/mL...</em>
<em />
Molarity is defined as moles of solute (Styrene in this case) per liter of solution whereas molality is the moles of solute per kg of solvent. Thus, we need to find the moles of styrene, the volume in liters of the solution and the mass in kg of the solvent as follows:
<em>Moles styrene:</em>
Molar mass C₈H₈:
8C = 12.01g/mol*8 = 96.08g/mol
8H = 1.005g/mol* 8 = 8.04g/mol
96.08g/mol + 8.04g/mol = 104.12g/mol
Moles of 15.0g of styrene are:
15.0g * (1mol / 104.12g) = 0.144 moles of styrene
<em>Liters solution:</em>
250mL * (1L / 1000mL) = 0.250L
<em>kg solvent:</em>
250mL * (0.88g/mL) * (1kg / 1000g) = 0.220kg
Molarity is:
0.144 moles / 0.250L =
<h3>0.576M</h3>
Molality is:
0.144 moles / 0.220kg =
<h3>0.655m</h3>
<span>The atoms in a compound are held together by a chemical bond. The chemical bonds can be either covalent bonds or ionic bonds. Both the bonds are considered very strong bonds. These bonds are mainly formed by sharing of electrons or in the case when one of the elements making the compound donates electron to the other element. The nucleus of each atom attracts to form a strong bond. This property of attraction between the nucleus of the atoms actually helps in forming the chemical bonds. </span>