<span>Formula of the 20 common amino acids. The formula of an amino acid comprises, bound to a carbon (alpha carbon): a carboxyl group -COOH. an amine group -NH2.</span>
Answer:
0.50 M
Explanation:
Given data
- Mass of sodium sulfate (solute): 7.1 g
- Volume of solution: 100 mL
Step 1: Calculate the moles of the solute
The molar mass of sodium sulfate is 142.04 g/mol. The moles corresponding to 7.1 grams of sodium sulfate are:
Step 2: Convert the volume of solution to liters
We will use the relation 1 L = 1000 mL.
Step 3: Calculate the molarity of the solution
The atom has equal amount of Protons and electrons it is Neutral
Answer:
b) The dehydrated sample absorbed moisture after heating
Explanation:
a) Strong initial heating caused some of the hydrate sample to splatter out.
This will result in a higher percent of water than the real one, because you assume in the calculation that the splattered sample was only water (which in not true).
b) The dehydrated sample absorbed moisture after heating.
Usually inorganic salts may absorbed moisture from the atmosphere so this will explain the 13% difference between calculated water percent the real content of water in the hydrate.
c) The amount of the hydrate sample used was too small.
It will create some errors but they do not create a difference of 13% difference as stated in the problem.
d) The crucible was not heated to constant mass before use.
Here the error is small.
e) Excess heating caused the dehydrated sample to decompose.
Usually the inorganic compounds are stable in the temperature range of this kind of experiments. If you have an organic compound which retain water molecules you may decompose the sample forming volatile compounds which will leave crucible so the error will be quite high.