In order for you to get the answer, please have in mind the following situation: To increase the molar concentration of N2O4(g), 2NO2(g) should also increase for equilibrium to occur. Now, this equation is exothermic. By <span>Le Chatelier's principle, equilibrium constant and reaction constants also come into play in terms of increasing or decreasing the temperature. After that I know you can find the answer. </span>
Answer:
D
Explanation:
The amount of energy released or absorbed is equal the product of the mass, the specific heat capacity and the temperature change. The temperature change being the difference between the final and initial temperature.
Q = mc∆T
Q = heat energy (Joules, J) m = mass of a substance (kg) c = specific heat (units J/g∙K)
∆ is a symbol meaning "the change in" ∆T = change in temperature (Kelvins, K)
From the data provided in the question, we can deduce that:
Q = 16.7KJ = 16,700J
m = 225g
c = 1.74J/g.k
For the temperature, let the final temperature be f. This means our ∆T = f - 20
16,700 = 225 * 1.74 * (f - 20)
16700 = 391.5 (f - 20)
f - 20 = 16700/391.5
f - 20 = 42.7
f = 20 + 42.7 = 62.7
Hence the final temperature is 62.7 degrees Celsius
A mineral is a naturally occurring inorganic element or compound having an orderly internal structure and characteristic chemical composition, crystal form, and physical properties. ... A rock is an aggregate of one or more minerals, or a body of undifferentiated mineral matter.
A = number of mass = 31 => number of protons + number of neutrons = 31
Phosphours, Z = atomic number = 15 = number of protons
Symbol of the element phosphorus = P
=> The symbol of the isotope is the symbol of the element, P, with the number of mass, 31, to the left, as a superscript, and the atomic number, 15, to the left, as a suscript.