The size of the force varies inversely as the square of the distance between the two charges. Therefore, if the distance between the two charges is doubled, the attraction or repulsion becomes weaker, decreasing to one-fourth of the original value.
The ball should take twice as long to return to its original position as it took to reach its maximum height, so it should return to its original position at
.
Answer:
819.78 m
Explanation:
<u>Given:</u>
- OA = range of initial position of the airplane from the point of observation = 375 m
- OB = range of the final position of the airplane from the point of observation = 797 m
= angle of the initial position vector from the observation point = 
= angle of the final position vector from the observation point = 
= displacement vector from initial position to the final position
A diagram has been attached with the solution in order to clearly show the position of the plane.

Displacement vector of the airplane will be the shortest line joining the initial position of the airplane to the final position of the airplane which is given by:

The magnitude of the displacement vector = 
Hence, the magnitude of the displacement of the plane is 819.67 m during the period of observation.
Jemima is running with a velocity of 5m/s. She has a mass of 65kg, what is her kinetic energy would be 812.5 Joules.
<h3>What is mechanical energy?</h3>
Mechanical energy is the combination of all the energy in motion represented by total kinetic energy and the total stored energy in the system which is represented by total potential energy.
As given in the problem we have to calculate the Kinetic energy of the Jemima,
Kinetic energy = 1/2 ×mass×velocity²
=0.5×65×5²
=812.5 Joules
Thus, the kinetic energy of the Jemima would be 812.5 Joules.
To learn more about mechanical energy, refer to the link;
brainly.com/question/12319302
#SPJ1