Answer:
A
Explanation:
Think about rubbing your hands together- the friciton produces heat
The change in the kinetic energy refers to the work done in displacing a body, thus, the change in the kinetic energy of an object refers to the work done on the object.
The correct formula to use is:
W = Initial kinetic energy - Final kinetic energy;
Where, W = change in kinetic energy
Final kinetic energy and initial kinetic energy = 1/2 MV^2
Initial velocity = 15 m/s
Final velocity = 13.5 m/s
Initial mass = 0.650 kg
Final mass = 0.950 kg
W = 1/2 [0.650* (15 *15)] - 1/2 [0.950 * (13.5 * 13.5)]
W = 146.25 - 173.13 = 26.88
Therefore, the change in kinetic energy is 26.88 J.
The negative sign has to be ignored, because change in kinetic energy can not be negative.
<span />
Incomplete question as we have not told to find what quantity.The complete question is here
A spherical capacitor contains a charge of 3.50 nC when connected to a potential difference of 210.0 V. Its plates are separated by vacuum and the inner radius of the outer shell is 5.00 cm.calculate: (a) the capacitance; (b) the radius of the inner sphere; (c) the electric field just outside the surface of the inner sphere.
Answer:
(a) 
(b) 
(c)
Explanation:
Given data

For part (a)
The Capacitance given by:

For part (b)
The Capacitance of coordinates is given as

For part (c)
The electric field according to Gauss Law is given by:

Answer:
a. L = μ₀AN²/l b. 1.11 × 10⁻⁷ H
Explanation:
a. The magnetic flux through the solenoid, Ф = NAB where N = number of turns of solenoid, A = cross-sectional area of solenoid and B = magnetic field at center of solenoid = μ₀ni where μ₀ = permeability of free space, n = number of turns per unit length = N/l where l = length of solenoid and i = current in solenoid.
Also, Li = Ф where L = inductance of solenoid.
So, Li = NAB
= NA(μ₀ni)
= NA(μ₀Ni/l)
Li = μ₀AN²i/l
dividing both sides by i, we have
So, L = μ₀AN²/l
b. The self- inductance, L = μ₀AN²/l where
A = πd²/4 where d = diameter of solenoid = 0.150 cm = 1.5 × 10⁻³ m, N = 50 turns, μ₀ = 4π × 10⁻⁷ H/m and l = 5.00 cm = 5 × 10⁻² m
So, L = μ₀AN²/l
L = μ₀πd²N²/4l
L = 4π × 10⁻⁷ H/m × π(1.5 × 10⁻³ m)²(50)²/(4 × 5 × 10⁻² m)
L = 11,103.3 × 10⁻¹¹ H
L = 1.11033 × 10⁻⁷ H
L ≅ 1.11 × 10⁻⁷ H
Answer:
Explanation:
F = ma. For us, this looks like
60 = 30a and
a = 2 m/s/s
If the force goes up to, say, 90, then
90 = 30a and
a = 3...if the force goes up, the acceleration also goes up.
If the mass goes up to say, 60, and the force stays the same, then
60 = 60a and
a = 1...if the mass goes up, the acceleration goes down.