From the stoichiometry of the balanced reaction equation, the correct statement are;
- For every 1 molecule of methane CH4 that reacts, 2 molecules of H2O are produced.
- For every 20 grams of methane (CH4) that reacts, 40 grams of H2O are produced.
- For every 200 moles of methane (CH4) that reacts, 400 moles of H2O are produced.
<h3>What is combustion?</h3>
The term combustion refers to the burning of fossil fuels for the purpose of energy production. The equation for reaction is CH4 + 2O2 ---> CO2 + 2H2O.
Using this equation as shown, the true statements are;
- For every 1 molecule of methane CH4 that reacts, 2 molecules of H2O are produced.
- For every 20 grams of methane (CH4) that reacts, 40 grams of H2O are produced.
- For every 200 moles of methane (CH4) that reacts, 400 moles of H2O are produced.
Learn more about combustion: brainly.com/question/15117038
Density depends on both the mass and the volume of an object. If you cut a bar of gold in half, you would have two bars with half the mass of the original bar. However, each bar would also have half the volume of the original bar. The density of gold does not change.
Answer:
Silver, 0.239 J/(g °C)
Explanation:
- The heat change is related to specific heat as given by the formula;
Heat change = mass of substance × specific heat × change in temperature
- Therefore; considering same amount of substance or equal masses and have the same initial temperature.
- The change in temperature will be inversely proportional to the specific heat.
- Therefore; the higher the specific heat lower the temperature change.
- Hence, the change in temperature will be highest for the substance with the lowest specific heat.
Therefore; the one that will increase in temperature the most is Silver
Answer:
The main advantage would be that with the pouring temperature being much higher, there is very little chance that the metal will solidify in the mould while busy pouring. This will allow for moulds that are quite intricate to still be fully filled. The drawbacks, though, include an increased chance defects forming which relates to shrinkage (cold shots, shrinkage pores, etc). Another drawback includes entrained air being present, due to the viscosity of the metal being low because of the high pouring temperature.
Explanation:
Given
The enthalpy of formation of RbF (s) is –557.7kJ/mol
The standard enthalpy of formation of RbF (aq, 1 m) is –583.8 kJ/mol
The enthalpy of solution of RbF = Enthalpy of RbF (aq) - Enthalpy of formation of RbF (s)
= -583.8 - (-557.7) kJ/mol
= -26.1 kJ/mol
The enthalpy is negative which means that the temperature will rise when RbF is dissolved.