Answer:
Glycogen. Cellulose. Amylose. Cellulose. Amylopetin and Glycogen. Amylopetin and Cellulose.
Explanation:
Glycogen is the form that glucose is stored in human body.
Cellulose is the structural part of plant cell walls and human cannot digest it.
Amylose is the polysaccharide linked mainly by the the bonds of
1,4 glycosidic.
Cellulose is an unbranched polysaccharide linked mainly by the bonds of
1,4 glycosidic.
Amylopetin and Glycogen are branched polysaccharides linked by the bonds of
1,4 glycosidic and
1,6 glycosidic.
Amylopetin and Cellulose are mainly stored in plants.
Answer:- Third choice is correct, 17.6 moles
Solution:- The given balanced equation is:
Al_2(SO_4)_3+6KOH\rightarrow 2Al(OH)_3+3K_2SO_4
We are asked to calculate the moles of potassium hydroxide needed to completely react with 2.94 moles of aluminium sulfate.
From the balanced equation, there is 1:6 mol ratio between aluminium sulfate and potassium hydroxide.
It is a simple mole to mole conversion problem. We solve it using dimensional set up as:
2.94molAl_2(SO_4)_3(\frac{6molKOH}{1molAl_2(SO_4)_3})
= 17.6 mol KOH
So, Third choice is correct, 17.6 moles of potassium hydroxide are required to react with 2.94 moles of aluminium sulfate.
Boiling water is a physical change, because it is changing state of matter, there is a controllable temperature change, and you can change it back.
Frying the egg white is a chemical change, because there is a change of matter, controllable temperature change, but you CAN'T change it back.
Answer:When you add baking powder to water or milk, the alkali and the acidreact with one another and produce carbon dioxide – the bubbles. Sodium bicarbonate is a weak base which is commonly known as baking soda and used in cooking. It weakly ionizes in water: NaHCO3 + H2O → H2CO3 + (OH-) + (Na+). u need to stop deleteing my answers ughh
Explanation:
Answer:
7.5 g of hydrogen gas reacts with 50.0 g oxygen gas to form 57.5 g of water.
Explanation:
Here we have the check if the mass of the reactants is equal to the mass of the products.
Reactants

Products

The data is consistent with the law of conservation of matter.
Reactants

Products

The data is not consistent with the law of conservation of matter.
Reactant

Products

The data is not consistent with the law of conservation of matter.
Only the first data is consistent with the law of conservation of matter.