Answer:
The answer to your question is given below
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
Zn + 2HCl —> ZnCl2 + H2
Thus, we can write out the atoms present in both the reactant and the product by doing a simple head count. The atoms present are listed below:
Element >>> Reactant >>> Product
Zn >>>>>>>> 1 >>>>>>>>>> 1
H >>>>>>>>> 2 >>>>>>>>> 2
Cl >>>>>>>>> 2 >>>>>>>>> 2
Answer:
its because atoms are incredibly small its looking for atoms is like placing a blueberry in a foot ball field and looking at it from 10 miles up you cant see that blueberry
Explanation:
See the sketch attached.
<h3>Explanation</h3>
The Lewis structure of a molecule describes
- the number of bonds it has,
- the source of electrons in each bond, and
- the position of any lone pairs of electrons.
Atoms are most stable when they have eight or no electrons in their valence shell (or two, in case of hydrogen.)
- Each oxygen atom contains six valence electrons. It demands <em>two</em> extra electrons to be chemically stable.
- Each sulfur atom contains six valence electrons. It demands <em>two </em> extra electrons to be chemically stable.
- Each hydrogen atom demands <em>one</em> extra electron to be stable.
H₂O contains two hydrogen atoms and one oxygen atom. It would take an extra 2 + 2 × 1 = 4 electrons for all its three atoms are stable. Atoms in an H₂O would achieve that need by sharing electrons. It would form a total of 4 / 2 = 2 O-H bonds.
Each O-H bond contains one electron from oxygen and one from hydrogen. Hydrogen has no electron left. Oxygen has six electrons. Two of them have went to the two O-H bonds. The remaining four become 4 / 2 = 2 lone pairs. The lone pairs repel the O-H bonds. By convention, they are placed on top of the two H atoms.
Similarly, atoms in a SO₂ molecule demands an extra 2 × 2 + 2 = 6 electrons for its three atoms to become chemically stable. It would form 6 / 2 = 3 chemical bonds. Loops are unlikely in molecules without carbon. As a result, one of the two O atoms would form two bonds with the S atom while the other form only one.
Atoms are unstable with an odd number of valence electrons. The S atom in SO₂ would have become unstable if it contribute one electron to each of the three bond. It would end up with 3 × 2 + 3 = 9 valence electrons. One possible solution is that it contributes two electrons in one particular bond. One of the three bonds would be a coordinate covalent bond, with both electrons in that bond from the S atom. In some textbooks this type of bonds are also known as dative bonds.
Dots and crosses denotes the origin of electrons in a bond. Use the same symbol for electrons from the same atom. Electrons from the oxygen atoms O are shown in blue in the sketch. They don't have to be colored.
The number of moles of the magnesium (mg) is 0.00067 mol.
The number of moles of hydrogen gas is 0.0008 mol.
The volume of 1 more hydrogen gas (mL) at STP is 22.4 L.
<h3>
Number of moles of the magnesium (mg)</h3>
The number of moles of the magnesium (mg) is calculated as follows;
number of moles = reacting mass / molar mass
molar mass of magnesium (mg) = 24 g/mol
number of moles = 0.016 g / 24 g/mol = 0.00067 mol.
<h3>Number of moles of hydrogen gas</h3>
PV = nRT
n = PV/RT
Apply Boyle's law to determine the change in volume.
P1V1 = P2V2
V2 = (P1V1)/P2
V2 = (101.39 x 146)/(116.54)
V2 = 127.02 mL
Now determine the number of moles using the following value of ideal constant.
R = 8.314 LkPa/mol.K
n = (15.15 kPa x 0.127 L)/(8.314 x 290.95)
n = 0.0008
<h3>Volume of 1 mole of hydrogen gas at STP</h3>
V = nRT/P
V = (1 x 8.314 x 273) / (101.325)
V = 22.4 L
Learn more about number of moles here: brainly.com/question/13314627
#SPJ1
Molar mass of CH2NH2COOH - 75
Given mass of CH2NH2COOH - 30
Moles of CH2NH2COOH = Given mass/ Molar mass
moles of CH2NH2COOH = 30/75 = 0.4 mol
One mole of CH2NH2COOH contains 32 gram of oxygen
0.4 mole of CH2NH2COOH will contain = 0.4 × 32= 12.8 g of oxygen
Answer- the mass of oxygen in 30 g of CH2NH2COOH is 12.8 gram!