The value of the differential with respect to x is -xy/x²+ay
<h3>Implicit differentiation</h3>
Given the following function
x²y +ay² = b
We are to differentiate implicitly with respect to x
x²dy/dx + 2xy + 2aydy/dx = 0
(2x²+2ay)dy/dx = -2xy
dy/dx = -xy/x²+ay
Hence the value of the differential with respect to x is -xy/x²+ay
Learn more on implicit differentiation here: brainly.com/question/25081524
#SPJ1
Answer:
Step-by-step explanation:
Rewrite this quadratic equation in standard form: 2n^2 + 3n + 54 = 0. Identify the coefficients of the n terms: they are 2, 3, 54.
Find the discriminant b^2 - 4ac: It is 3^2 - 4(2)(54), or -423. The negative sign tells us that this quadratic has two unequal, complex roots, which are:
-(3) ± i√423 -3 ± i√423
n = ------------------- = ------------------
2(2) 4
Step-by-step explanation:
A regular n-sided polygon has n axes of symmetry. The angle between two consecutive axes is 360° / n.
In the case of an octagon, the angle is 360° / 8 = 45°.