Answer: (B)
Explanation: If you are unsure about where to start, you could always plot some numbers down until you see a general pattern.
But a more intuitive way is to determine what happens during each transformation.
A regular y = |x| will have its vertex at the origin, because nothing is changed for a y = |x| graph. We have a ray that is reflected at the origin about the y-axis.
Now, let's explore the different transformations for an absolute value graph by taking a y = |x + h| graph.
What happens to the graph?
Well, we have shifted the graph -h units, just like a normal trigonometric, linear, or even parabolic graph. That is, we have shifted the graph h units to its negative side (to the left).
What about the y = |x| + h graph?
Well, like a parabola, we shift it h units upwards, and if h is negative, we shift it h units downwards.
So, if you understand what each transformation does, then you would be able to identify the changes in the shape's location.
Your formula for this is

and

. Get everything on one side of the equals sign, set it equal to 0 and factor. When you do this you get (x-3)(x+27). The Zero Product Property rule tells us that either x-3 = 0 or x+27 = 0 and that x = 3 and -27. The only thing in math that will NEVER be negative besides time is distance/length, therefore, x cannot be 27 and has to be 3.
In general, the sum of the measures of the interior angles of a quadrilateral is 360. This is true for every quadrilateral. This does not help here, because there are two angles (angles B and D) we know nothing about. We only know about opposite angles A and C.
In this case, you can use another theorem.
Opposite angles of an inscribed quadrilateral are supplementary.
m<A + m<C = 180
3x + 6 + x + 2 = 180
4x + 8 = 180
4x = 172
x = 43
m<A = 3x + 6 = 3(43) + 6 = 135
Answer: 135 deg
Answer: dilation
Step-by-step explanation:
the others are rigid transformations, the can’t change the size of the triangle.
Answer:
a10 b10
Step-by-step explanation: