Answer:
See explanation and image attached
Explanation:
This reaction is known as mercuric ion catalyzed hydration of alkynes.
The first step in the reaction is attack of the mercuric ion on the carbon-carbon triple bond, a bridged intermediate is formed. This bridged intermediate is attacked by water molecule to give an organomercury enol. This undergoes keto-enol tautomerism, proton transfer to the keto group yields an oxonium ion, loss of the mercuric ion now gives equilibrium keto and enol forms of the compound. The keto form is favoured over the enol form.
4 moles of hydrogen = 4 * 1.008 = 4.032 grams
1 mole of helium = 4.003 grams
Difference is 4.032 - 4.003
= 0.029 g
Molarity is a measure of a solution's concentration calculation by getting the ratio of the number of moles of solute to the total volume of solution. This has a unit of M or molar, equivalent to mole/L.
It is more important and meaningful to know the molarity rather than if the solution is dilute or concentrated because molarity gives the QUANTITATIVE approach of knowing the concentration while the second one only gives us the QUALITATIVE description of the solution. Hence, we are able to calculate for other unknown parameters if we have the molarity known.
Answer:
450. g of 0.173 % KCN solution contains 779 mg of KCN.
Explanation:
Mass of the solution = m
Mass of the KCN in solution = 779 mg
Mass by mass percentage of KCN solution = 0.173%



1 mg = 0.001 g
m = 450,289 mg × 0.001 g = 450.289 mg ≈ 450. g
450. g of 0.173 % KCN solution contains 779 mg of KCN.