To determine the number of dna molecules that can be stacked as requested in this item, we convert the given measurements in a single unit. For simplicity, we convert all the lengths to meters.
Length of DNA molecule = (2.5 nm)(1 x 10^-9 m/1 nm) = 2.5 x 10^-9 nm
Height of a person = (5 ft 10 in)(12 inches/ 1ft)(2.54 cm/1 in)(1 x 10^-2 m/ 1 cm)
= 1.778 m
Then, divide the height of the person by the length of a single DNA molecule.
n = 1.778 m / (2.5 x 10^-9)
n = 7.112 x 10^8
Hence, the number of DNA would be 7.112 x 10^9.
43.56 grams of are produced if 16g of CH4 reacts with 64g of O2.
Explanation:
Balance equation for the reaction:
CH4 + 2O2⇒ CO2 +2H2O
Data given : mass of CH4 =16 grams atomic mass = 16.04 grams/mole
mass of water 36 gram atomic mass = 18 grams/moles
mass of CO2=? atomic mass = 44.01 grams/mole
number of moles =
equation 1
number of moles in CH4
n = 
= 0.99 moles
Since combustion is done in presence of oxygen hence it is an excess reagent and methane is limiting reagent so production of CO2 depends on it.
From the equation
1 mole of CH4 gave 1 mole of CO2
O.99 moles of CH4 will give x moles of CO2
= 
x = 0.99 moles of carbon dioxide
grams of CO2 = number of moles x atomic mass
= 0.99 x 44.01
= 43.56 grams of CO2 is produced.
I think it can change the paperclip's color.
To find the atomic mass of chlorine, the atomic mass of each isotope is multiplied by the relative abundance (the percent abundance in decimal form) and then the individual masses are added together. The atomic mass of chlorine is 35.45 amu.