Answer:
The vertex for parabola y²=4ax is (0,0)
and for (y-k) ²= 4a(x+h), vertex is (h, k).
But you have not given the equation of parabola in the equation.
Answer:
![\frac{125}{27}](https://tex.z-dn.net/?f=%5Cfrac%7B125%7D%7B27%7D)
Step-by-step explanation:
![\frac{2^{-4} \times 15^{-3} \times 625}{5^2 \times 10^{-4}}](https://tex.z-dn.net/?f=%5Cfrac%7B2%5E%7B-4%7D%20%5Ctimes%2015%5E%7B-3%7D%20%5Ctimes%20625%7D%7B5%5E2%20%5Ctimes%2010%5E%7B-4%7D%7D)
Lets expand all the composite numbers into prime numbers.
![=> \frac{2^{-4} \times (3^{-3} \times 5^{-3}) \times 5^4}{5^2 \times (2^{-4} \times 5^{-4})}](https://tex.z-dn.net/?f=%3D%3E%20%5Cfrac%7B2%5E%7B-4%7D%20%5Ctimes%20%283%5E%7B-3%7D%20%5Ctimes%205%5E%7B-3%7D%29%20%5Ctimes%205%5E4%7D%7B5%5E2%20%5Ctimes%20%282%5E%7B-4%7D%20%5Ctimes%205%5E%7B-4%7D%29%7D)
Lets cancel
from numerator and denominator.
![=> \frac{3^{-3} \times 5^{-3} \times 5^4}{5^2 \times 5^{-4}}](https://tex.z-dn.net/?f=%3D%3E%20%5Cfrac%7B3%5E%7B-3%7D%20%5Ctimes%205%5E%7B-3%7D%20%5Ctimes%205%5E4%7D%7B5%5E2%20%5Ctimes%205%5E%7B-4%7D%7D)
Using laws of exponents , lets solve this.
![=> \frac{3^{-3} \times 5^{(-3 + 4)}}{5^{( 2 - 4)}}](https://tex.z-dn.net/?f=%3D%3E%20%5Cfrac%7B3%5E%7B-3%7D%20%5Ctimes%205%5E%7B%28-3%20%2B%204%29%7D%7D%7B5%5E%7B%28%202%20-%204%29%7D%7D)
![=> \frac{3^{-3} \times 5^{1}}{5^{-2}}](https://tex.z-dn.net/?f=%3D%3E%20%5Cfrac%7B3%5E%7B-3%7D%20%5Ctimes%205%5E%7B1%7D%7D%7B5%5E%7B-2%7D%7D)
![=> 3^{-3} \times 5^{[1 - (-2)]}](https://tex.z-dn.net/?f=%3D%3E%203%5E%7B-3%7D%20%5Ctimes%205%5E%7B%5B1%20-%20%28-2%29%5D%7D)
![=> 3^{-3} \times 5^{3}](https://tex.z-dn.net/?f=%3D%3E%203%5E%7B-3%7D%20%5Ctimes%205%5E%7B3%7D)
![=> \frac{5^3}{3^3} = \frac{125}{27}](https://tex.z-dn.net/?f=%3D%3E%20%5Cfrac%7B5%5E3%7D%7B3%5E3%7D%20%3D%20%5Cfrac%7B125%7D%7B27%7D)
The answer will be 23 bcd. Hope it’s helps
Answer:
1
Step-by-step explanation:
Answer:
4th option
Step-by-step explanation:
The relationship is linear,
putting the value of x in the right side of the equation of option 4, you'll get the value of the left side
putting, x=1
y+4=-1/2(x-1)
y=-1/2(1-1)-4
y=-4
putting, x=7
y+4=-1/2(7-1)
y=-1/2(6)-4
y=-6/2-4
y=-3-4
y=-7