Answer:
This reaction is exothermic because the system shifted to the left on heating.
Explanation:
2NO₂ (g) ⇌ N₂O₄(g)
Reactant => NO₂ (dark brown in color)
Product => N₂O₄ (colorless)
From the question given above, we were told that when the reaction at equilibrium was moved from room temperature to a higher temperature, the mixture turned dark brown in color.
This simply means that the reaction does not like heat. Hence the reaction is exothermic reaction.
Also, we can see that when the temperature was increased, the reaction turned dark brown in color indicating that the increase in the temperature favors the backward reaction (i.e the equilibrium shift to the left) as NO₂ which is the reactant is dark brown in color. This again indicates that the reaction is exothermic because an increase in the temperature of an exothermic reaction will shift the equilibrium position to the left.
Therefore, we can conclude that:
The reaction is exothermic because the system shifted to the left on heating.
Answer:
Graphs should be titled.
Although the bunnies feed foxes, if there are TOO many foxes, they don’t go well; so that looked cyclic to me. It is a good argument.
STUDY VS GRADES is INCREASINGLY
OBVIOUS! I already know what hummingbirds like. Rain can help wash the smoke from forest fires from the air; do you pick one, OK?
Don’t be nervous - study more. I’ve had a great many students, and they not only survived my classes - most THRIVED!
Explanation:
Answer:
The answer is: <em>carbon</em>
Explanation:
Organic molecules contain the chemical element carbon (C) in its structure. In this type of molecules, carbon is usually bonded to hydrogen (H), oxygen (O) and, with less frecuency, nitrogen (N). Therefore, in these molecules, carbon forms simple, double and triple bonds with itself. Examples of organic molecules that are very important in biology are carbohydrates, lipids, proteins and nucleic acids.
Answer:
Chemistry plays an important and useful role towards the development and growth of a number of industries. This includes industries like glass, cement, paper, textile, leather, dye etc. We also see huge applications of chemistry in industries like paints, pigments, petroleum, sugar, plastics, Pharmaceuticals.