Answer:
Joule-Thomson coefficient for an ideal gas:

Explanation:
Joule-Thomson coefficient can be defined as change of temperature with respect to pressure at constant enthalpy.
Thus,
![\mu_{J.T} = \left [\frac{\partial T}{\partial P} \right ]_H](https://tex.z-dn.net/?f=%5Cmu_%7BJ.T%7D%20%3D%20%5Cleft%20%5B%5Cfrac%7B%5Cpartial%20T%7D%7B%5Cpartial%20P%7D%20%5Cright%20%5D_H)
Also,


![dH= \left [\frac{\partial H}{\partial T}\right ]_P dT + \left [\frac{\partial H}{\partial P}\right ]_T dT](https://tex.z-dn.net/?f=dH%3D%20%5Cleft%20%5B%5Cfrac%7B%5Cpartial%20H%7D%7B%5Cpartial%20T%7D%5Cright%20%5D_P%20dT%20%2B%20%5Cleft%20%5B%5Cfrac%7B%5Cpartial%20H%7D%7B%5Cpartial%20P%7D%5Cright%20%5D_T%20dT)
Also,
is defined as:
![C_p = \left [\frac{\partial H}{\partial T}\right ]_P](https://tex.z-dn.net/?f=C_p%20%3D%20%5Cleft%20%5B%5Cfrac%7B%5Cpartial%20H%7D%7B%5Cpartial%20T%7D%5Cright%20%5D_P)

![dH= C_p dT + \left [\frac{\partial H}{\partial P}\right ]_T dT](https://tex.z-dn.net/?f=dH%3D%20C_p%20dT%20%2B%20%5Cleft%20%5B%5Cfrac%7B%5Cpartial%20H%7D%7B%5Cpartial%20P%7D%5Cright%20%5D_T%20dT)
Acoording to defination, the ethalpy is constant which means 

![\left [\frac{\partial H}{\partial P}\right ]_T = -C_p\times \left [\frac{\partial T}{\partial P}\right ]_H](https://tex.z-dn.net/?f=%5Cleft%20%5B%5Cfrac%7B%5Cpartial%20H%7D%7B%5Cpartial%20P%7D%5Cright%20%5D_T%20%3D%20-C_p%5Ctimes%20%5Cleft%20%5B%5Cfrac%7B%5Cpartial%20T%7D%7B%5Cpartial%20P%7D%5Cright%20%5D_H)

![\mu_{J.T} = \left [\frac{\partial T}{\partial P}\right ]_H](https://tex.z-dn.net/?f=%5Cmu_%7BJ.T%7D%20%3D%20%5Cleft%20%5B%5Cfrac%7B%5Cpartial%20T%7D%7B%5Cpartial%20P%7D%5Cright%20%5D_H)

![\left [\frac{\partial H}{\partial P}\right ]_T =-\mu_{J.T}\times C_p](https://tex.z-dn.net/?f=%5Cleft%20%5B%5Cfrac%7B%5Cpartial%20H%7D%7B%5Cpartial%20P%7D%5Cright%20%5D_T%20%3D-%5Cmu_%7BJ.T%7D%5Ctimes%20C_p)
For an ideal gas,
![\left [\frac{\partial H}{\partial P}\right ]_T = 0](https://tex.z-dn.net/?f=%5Cleft%20%5B%5Cfrac%7B%5Cpartial%20H%7D%7B%5Cpartial%20P%7D%5Cright%20%5D_T%20%3D%200)
So,

Thus,
≠0. So,

Copper has a FCC i.e. face centered cubic crystal structure. The 100 plane is essentially a planar section of the cubic cell where 4 Cu atoms occupy the 4 corners of the plane along with 1 Cu atom at the center of that plane. Each of the Cu atoms in the corners is shared by 4 adjacent unit cells. Thus, there are 2 Cu atoms present in the 100 plane (4*1/4 + 1 = 2).
Now, the planar density PD along the 100 plane is given as:
PD(100) = # atoms in the 100 plane/Area of 100 plane
=
Here R = radius = 0.128 nm = 
PD = 
Answer:
5 L.
Explanation:
From the question given above, the following data were obtained:
Initial volume (V1) = 10 L
Initial pressure (P1) = 2.5 atm
Final pressure (P2) = 5 atm
Final volume (V2) =.?
Since the temperature is constant, we shall apply the Boyle's law equation to determine the new volume of the gas. This can be obtained as follow:
P1V1 = P2V2
2.5 × 10 = 5 × V2
25 = 5 × V2
Divide both side by 5
V2 =25/5
V2 = 5 L
Thus, the new volume of the gas is 5 L
Answer:
the answer is b
Explanation:
so the arrows signify the movement/ flow of energy from one organism to the next. so as one animal consumes another the energy from the the consumed animal flows through the consumer. its like eating a protein bar and the energy the protein bar gives you is what you have gotten from consuming the bar.
ps. i hope this helps