<u>Given</u><u> </u><u>info:</u><u>-</u>If the radius of a right circular cylinder is doubled and height becomes 1/4 of the original height.
Find the ratio of the Curved Surface Areas of the new cylinder to that of the original cylinder ?
<u>Explanation</u><u>:</u><u>-</u>
Let the radius of the right circular cylinder be r units
Let the radius of the right circular cylinder be h units
Curved Surface Area of the original right circular cylinder = 2πrh sq.units ----(i)
If the radius of the right circular cylinder is doubled then the radius of the new cylinder = 2r units
The height of the new right circular cylinder
= (1/4)×h units
⇛ h/4 units
Curved Surface Area of the new cylinder
= 2π(2r)(h/4) sq.units
⇛ 4πrh/4 sq.units
⇛ πrh sq.units --------(ii)
The ratio of the Curved Surface Areas of the new cylinder to that of the original cylinder
⇛ πrh : 2πrh
⇛ πrh / 2πrh
⇛ 1/2
⇛ 1:2
Therefore the ratio = 1:2
The ratio of the Curved Surface Areas of the new cylinder to that of the original cylinder is 1:2
Answer:
750 if just 27 is being rooted
18.9 if 27 x 250 is being rooted
Step-by-step explanation:
Answer:
<em>True
</em>
Step-by-step explanation:
<em>Rate Of Change Of Functions
</em>
Given a function y=f(x), the rate of change of f can be computed as the slope of the tangent line in a specific point (by using derivatives), or an approximation by computing the slope of a secant line between two points (a,b) (c,d) that belong to the function. The slope can be calculated with the formula

If this value is calculated with any pair of points and it always results in the same, then the function is linear. If they are different, the function is non-linear.
Let's take the first two points from the table (1,1)(2,4)

Now, we use the second and the third point (2,4) (3,9)

This difference in values of the slope is enough to state the function is non-linear
Answer: True
2 ^ (3/5)
the 3is the power and the 5 is the root
Choice D
the answer is A
these are filler words so I can submit it haha