-- The vertical component of the ball's velocity is 14 sin(<span>51°) = 10.88 m/s
-- The acceleration of gravity is 9.8 m/s².
-- The ball rises for 10.88/9.8 seconds, then stops rising, and drops for the
same amount of time before it hits the ground.
-- Altogether, the ball is in the air for (2 x 10.88)/(9.8) = 2.22 seconds
==================================
-- The horizontal component of the ball's velocity is 14 cos(</span><span>51°) = 8.81 m/s
-- At this speed, it covers a horizontal distance of (8.81) x (2.22) = <em><u>19.56 meters</u></em>
before it hits the ground.
As usual when we're discussing this stuff, we completely ignore air resistance.
</span>
Working of a Half wave rectifier
The diode is connected in series with the secondary of the transformer and the load resistance RL. The primary of the transformer is being connected to the ac supply mains. The ac voltage across the secondary winding changes polarities after every half cycle of the input wave.
Answer:
4v/3
Explanation:
Assume elastic collision by the law of momentum conservation:

where v is the original speed of car 1, v1 is the final speed of car 1 and v2 is final speed of car 2. m1 and m2 are masses of car 1 and car 2, respectively
Substitute 

Divide both side by
, then multiply by 6 we have



So the final speed of the second car is 4/3 of the first car original speed
Answer:
(a) 
(b) 5220 j
(c) 1740 watt
(d) 3446.66 watt
Explanation:
We have given mass m = 290 kg
Initial velocity u = 0 m/sec
Final velocity v = 6 m/sec
Time t = 3 sec
From first equation of motion
v = u+at
So 
(a) We know that force is given by
F = ma
So force will be 
(b) From second equation of motion we know that

We know that work done is given by
W = F s = 580×9 =5220 j
(c) Time is given as t = 3 sec
We know that power is given as

(d) Time t = 1.5 sec
So 
Answer:
∴ fractional compression = 1.34 × 10⁻²
Explanation:
given,
depth of Indian ocean = 3000 m
Bulk modulus of the water = 2.2 x 10⁹ N/m²
We know,
P = P₀ + ρgh
P₀ is the atmospheric pressure
P₀ = 10⁵ N/m²
ρ is the density of the water, 1000 Kg/m³
P = 10⁵ + 1000 × 9.8 × 3000 = 2.94 × 10⁷ N/m²
using formula,
B = P/{-∆V/V}
B is bulk modulus and { -∆V/V} is the fractional compression


∴ fractional compression = 1.34 × 10⁻²