Theory as to what will happen in the experiment. It is essentially an educated guess about what you expect the outcome of the experiment to be.
Answer:
The most appropriate structure given the sparse spectral data is<u><em> 4-acetyl benzoic acid (see attached).</em></u>
Explanation:
It is difficult to accurately elucidate the structure of this compound without its chemical formula. But from the 1H NMR spectral data shows a total of 8 hydrogen atoms:
- 12.71 (1H. s) - confirms presence of carboxylic acid proton, C=O-OH
- 8.04 (2H, d) - confirms aromatic hydrogen
- 7.30 (2H, d) - confirms aromatic hydrogen
- 2.41 (3H,s) - confirms C=C hydrogen or ketone O=C-RCH3
The attached files show the structure and the neighboring hydrogen atoms.
<u>The most likely structure i 4-acetyl benzoic acid</u>
Answer:
Lead (Pb), a soft, silvery white or grayish metal in Group 14 (IVa) of the periodic table.
Answer:

Explanation:
Molarity refers to a measure of concentration.
Molarity = moles of solute/Litres of solution
Molarity refers to number of moles of solute present in this solution.
In order to find a solution's molarity, use value for the number of moles of solute and the total volume of the solution expressed in liters
As molarity of 2.3 mol of Kl is dissolved in 0.5 L of water,
Molarity = 
Answer:
A. There was still 140 ml of volume available for the reaction
Explanation:
According to Avogadro's law, we have that equal volumes of all gases contains equal number of molecules
According to the ideal gas law, we have;
The pressure exerted by a gas, P = n·R·T/V
Where;
n = The number of moles
T = The temperature of the gas
R = The universal gas constant
V = The volume of the gas
Therefore, given that the volumes and number of moles of the removed air and added HCl are the same, the pressure and therefore, the volume available for the reaction will remain the same
There will still be the same volume available for the reaction.