The suns hear is uneven on the earth
I hope this helps
Answer:
The heat released by the combustion is 20,47 kJ
Explanation:
Bomb calorimeter is an instrument used to measure the heat of a reaction. The formula is:
Q = C×m×ΔT + Cc×ΔT
Where:
Q is the heat released
C is specific heat of water (4,186kJ/kg°C)
m is mass of water (1,00kg)
ΔT is temperature change (23,65°C - 20,45°C)
And Cc is heat capacity of the calorimeter (2,21kJ/°C)
Replacing these values the heat released by the combustion is:
<em>Q = 20,47 kJ</em>
Answer:
2.1x10⁹ years
Explanation:
U-238 is a radioactive substance, which decays in radioactive particles. It means that this substance will lose mass, and will form another compound, the Pb-206.
The time need for a compound loses half of its mass is called half-life, and knowing the initial mass (mi) and the final mass (m) the number of half-lives passed (n) can be found by:
m = mi/2ⁿ
The mass of Pb-206 will be the mass that was lost by U-238, so it will be mi - m. Thus, the mass ration can be expressed as:
(mi-m)/m = 0.337/1
mi - m = 0.337m
mi = 1.337m
Substituing mi in the expression of half-life:
m = 1.337m/2ⁿ
2ⁿ = 1.337m/m
2ⁿ = 1.337
ln(2ⁿ) = ln(1.337)
n*ln(2) = ln(1.337)
n = ln(1.337)/ln2
n = 0.4190
The time passed (t), or the age of the sample, is the half-life time multiplied by n:
t = 4.5x10⁹ * 0.4190
t = 1.88x10⁹ ≅ 2.1x10⁹ years
Answer:

Explanation:
Balanced equation: CO(g) + H₂O(g) ⟶ CO₂(g) + H₂(g)
We can calculate the enthalpy change of a reaction by using the enthalpies of formation of reactants and products

(a) Enthalpies of formation of reactants and products

(b) Total enthalpies of reactants and products

(c) Enthalpy of reaction
The best answer is "<span>High temperatures increase the activation energy of the reaction."
The Haber process is an exothermic reaction at room temperature. This means that the reaction actually favors the reverse reaction, especially when the temperature is increased. So why increase the reaction temperature?
The reason for this is that nitrogen is a very stable element. Therefore, more energy is needed to overcome the slow rate of reaction. So the reaction temperature must be low enough to favor a forward reaction, but high enough to speed up the reaction.</span>