<u>The following statements are false about collisions:
</u>
- The velocity change of two respective objects involved in a collision will always be equal.
- Total momentum is always conserved between any two objects involved in a collision.
Answer: Option B, and D
<u>Explanation:
</u>
In any collisions, equal amount of net force will be acted upon the colliding objects due to the third law of Newton, irrespective of the significance difference in mass of the objects. Similarly, they can also have different acceleration values during collision of two objects if the masses are identical.
But the statements regarding the equal change in velocity of two objects respectively involved in collision always is false, as the conservation of momentum is applicable for isolated system only. So it is true for only isolated system and not in all the systems.
The same reason goes for falsifying the fourth statement which states that total momentum is always conserved between two objects involved in a collision as this statement is only true for isolated system where the conservation of momentum can be applied. Thus the second and fourth statement is false regarding collision.
Answer:
Explanation:
Given
rope makes an angle of 
Mass of sled and snow is m
Normal Force 
applied Force is F
as Force is pulling in nature therefore normal reaction is given by

Also 


-------1
---------2
Squaring 1 & 2 and then adding


Substitute value of F in 1


Answer: C. Radio-controlled toy airplane
Explanation:
Just did the quiz
Answer:
, the minus meaning west.
Explanation:
We know that linear momentum must be conserved, so it will be the same before (
) and after (
) the explosion. We will take the east direction as positive.
Before the explosion we have
.
After the explosion we have pieces 1 and 2, so
.
These equations must be vectorial but since we look at the instants before and after the explosions and the bomb fragments in only 2 pieces the problem can be simplified in one dimension with direction east-west.
Since we know momentum must be conserved we have:

Which means (since we want
and
):

So for our values we have:

<span>Exothermic reaction is a chemical reaction that releases energy. This reaction releases heat energy or light .
In an endotermic reaction energy is used.
Enthaply is the heat energy change , delta H.
If the sum of the enthalpies of the reactans is greater than the products the reaction is exothermic. If the products side has a larger enthaply than the process is endothermic. So, if delta H is negative then the process is exothermic. If delta H is positive, than the process is endothermic.
Exothermic are: A+BC -> AB+C
A2+B2 -> 2AB
Endothermic are:AB+C -> AC+B
A2 + C2 -> 2AC
B2+C2 -> 2BC</span>