1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
k0ka [10]
2 years ago
11

An unfortunate 18 kg monkey falls from a 40 m tall tree. What is the monkeys final velocity just befor he impacts the ground.? a

7063.2 m/s b 784 m/s c 28 m/s d 720 m/s
Physics
1 answer:
zalisa [80]2 years ago
5 0
The correct answer is c) 28 m/s.
Let's find the step-by-step solution. The motion of the monkey is an uniformly accelerated motion, with acceleration equal to g=9.81 m/s^2. The initial velocity of the monkey is zero, while the distance covered is S=40 m. Therefore, we can use the following relationship to find vf, the final velocity of the monkey:
2aS=v_f^2-v_i^2=v_f^2
from which
v_f= \sqrt{2aS}= \sqrt{2\cdot 9.81 m/s^2 \cdot 40 m}=28 m/s
You might be interested in
A cannon with a muzzle speed of 1 000 m/s is used to start an avalanche on a mountain slope. The target is 2 000 m from the cann
Nataliya [291]

Answer:

∅ = 89.44°

Explanation:

In situations like this air resistance are usually been neglected thereby making g= 9.81 m/s^{2}

Bring out the given parameters from the question:

Initial Velocity (V_{1}) = 1000 m/s

Target distance (d) = 2000 m

Target height (h) =  800 m

Projection angle ∅ = ?

Horizontal distance = V_{1x}tcos ∅     .......................... Equation 1

where V_{1x} = velocity in the X - direction

           t = Time taken

Vertical Distance = y = V_{1y} t - \frac{1}{2}gt^{2}        ................... Equation 2

Where   V_{1y} = Velocity in the Y- direction

              t  = Time taken

V_{1y} = V_{1}sin∅

Making time (t) subject of the formula in Equation 1

                    t = d/(V_{1x}cos ∅)

                      t = \frac{2000}{1000coso} = \frac{2}{cos0}  =    \frac{d}{cos o}             ...................Equation 3

substituting equation 3 into equation 2

Vertical Distance = d = V_{1y} \frac{d}{cos o} - \frac{1}{2}g\frac{2}{cos0}   ^{2}

                                  Vertical Distance = h = sin∅ \frac{d}{cos o} - \frac{1}{2}g\frac{2}{cos0}   ^{2}

  Vertical Distance = h = dtan∅   - \frac{1}{2}g\frac{2}{cos0}   ^{2}

  Applying geometry

                              \frac{1}{cos o} = tan^{2} o + 1

  Vertical Distance = h = d tan∅   - 2 g (tan^{2} o + 1)

               substituting the given parameters

               800 = 2000 tan ∅ - 2 (9.81)( tan^{2} o + 1)

              800 = 2000 tan ∅ - 19.6( tan^{2} o + 1)  Equation 4

Replacing tan ∅ = Q     .....................Equation 5

In order to get a quadratic equation that can be easily solve.

            800 = 2000 Q - 19.6Q^{2} + 19.6

Rearranging 19.6Q^{2} - 2000 Q + 780.4 = 0

                    Q_{1} = 101.6291

                      Q_{2} = 0.411

    Inserting the value of Q Into Equation 5

                 tan ∅ = 101.63    or tan ∅ = 0.4114

Taking the Tan inverse of each value of Q

                  ∅ = 89.44°     ∅ = 22.37°

             

4 0
2 years ago
Please anyone post any class 9 physics question​
aalyn [17]

Answer:

I will but can you just wait for some minutes cus I am in a hurry now.

sorry that pic is a little blurry

6 0
2 years ago
Joanne drives her car at a speed of 20 m/s. when she applied her breaks, a frictional force of 2000 N brought her car to a compl
Papessa [141]

Answer:

A) 1000 kg

Explanation:

vf = vi + at

0 = 20 + (a)(10)

a = -2.0 m/s^2

F = ma

2000 = (m)(2)

m = 1000 kg

8 0
9 months ago
Calculate the de Broglie wavelength of (a) a mass of 1.0 g traveling at 1.0 m s−1 , (b) the same, traveling at 1.00 × 105 km s−1
lesantik [10]

Answer:

a)\lambda=6.63\times10^{-31}m

b)\lambda=6.63\times10^{-39}m

c)\lambda=9.97\times10^{-11}m

d)\lambda=4.03\times10^{-36}m

e)λ=∞

Explanation:

De Broglie discovered that an electron or other mass particles can have a wavelength associated, and that wavelength (λ) is:

\lambda=\frac{h}{P}=\frac{h}{mv}

with h the Plank's constant (6.63\times10^{-34}\frac{m^{2}kg}{s}) and P the momentum of the object that is mass (m) times velocity (v).

a)\lambda=\frac{6.63\times10^{-34}}{(1.0\times10^{-3}kg*1.0)}

\lambda=6.63\times10^{-31}m

b)\lambda=\frac{6.63\times10^{-34}}{(1.0\times10^{-3}*(1.00\times10^{8}))}

\lambda=6.63\times10^{-39}m

c)\lambda=\frac{6.63\times10^{-34}}{(6.65\times10^{-27}*1000)}

\lambda=9.97\times10^{-11}m

d)\lambda=\frac{6.63\times10^{-34}}{(74*2.22)}

\lambda=4.03\times10^{-36}m

e) \lambda=\frac{6.63\times10^{-34}}{(74*0)}

λ=∞

6 0
3 years ago
A 45-mH ideal inductor is connected in series with a 60-Ω resistor through an ideal 15-V DC power supply and an open switch. If
Salsk061 [2.6K]

Complete question:

A 45-mH ideal inductor is connected in series with a 60-Ω resistor through an ideal 15-V DC power supply and an open switch. If the switch is closed at time t = 0 s, what is the current 7.0 ms later?

Answer:

The current in the circuit 7 ms later is 0.2499 A

Explanation:

Given;

Ideal inductor, L = 45-mH

Resistor, R =  60-Ω

Ideal voltage supply, V = 15-V

Initial current at t = 0 seconds:

I₀ = V/R

I₀  = 15/60 = 0.25 A

Time constant, is given as:

T = L/R

T = (45 x 10⁻³) / (60)

T = 7.5 x 10⁻⁴ s

Change in current with respect to time, is given as;

I(t) = I_o(1-e^{-\frac{t}{T}})

Current in the circuit after 7 ms later:

t = 7 ms = 7 x 10⁻³ s

I(t) = I_o(1-e^{-\frac{t}{T}})\\\\I =0.25(1-e^{-\frac{7*10^{-3}}{7.5*10^{-4}}})\\\\I = 0.25(0.9999)\\\\I = 0.2499 \ A

Therefore, the current in the circuit 7 ms later is 0.2499 A

6 0
3 years ago
Other questions:
  • Jamie hears a high-pitched sound that then changes to a low-pitched sound. What is most likely occurring?
    13·2 answers
  • Name three situations in which force is created. describe the cause of the force in each situation
    11·1 answer
  • Will it take longer for a train or a car traveling at 100 mi/hr to stop
    13·2 answers
  • What is the relationship between the movement of the atmosphere and surface currents
    12·1 answer
  • There are clouds forming over Florida. The temperatures in the clouds and in the air are above freezing. Which form of precipita
    5·1 answer
  • What is the purpose of the zig zag line on the periodic table
    6·1 answer
  • What does MA mean for you in real life?
    9·1 answer
  • What is the hardy-weinberg principle?
    12·1 answer
  • 1. ____________is defined as the distance an object travels per unit of time.
    5·1 answer
  • How energy and power are different ???
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!