Answer:
E = 3.194 x 10⁹ J = 3.194 GJ
Explanation:
The formula for the absolute potential energy is:
U = - GMm/2r
where,
G = Gravitational Constant = 6.67 x 10⁺¹¹ N m²/kg²
M = mass of Earth = 5.972 x 10²⁴ kg
m = mass of satellite = 470 kg
r = distance between the center of Earth and satellite
Thus, the energy required from engine will be difference between the potential energies.
E = U₂ - U₁
E = - GMm/2r₂ - (- GMm/2r₁)
E = (GMm/2)(1/r₁ - 1/r₂)
where,
r₁ = Radius of Earth + 350 km = 6371 km + 350 km = 6721 km = 6.721 x 10⁶ m
r₂=Radius of Earth + 2350 km=6371 km + 2350 km= 8721 km = 8.721 x 10⁶ m
therefore,
E = [(6.67 x 10⁺¹¹ N m²/kg²)(5.972 x 10²⁴ kg)(470 kg)/2](1/6.721 x 10⁶ m - 1/8.721 x 10⁶ m)
<u>E = 3.194 x 10⁹ J = 3.194 GJ</u>
The Correct answer to this question for Penn Foster Students is: Direction
Answer:
the correct answer is c, they will accelerate away from each other at different speeds. the 80kg will go faster due to less mass
Answer: The illusion of motion that occurs when a stationary object is first seen briefly in one location and, following a short interval, is seen in another location.
Explanation:
Answer:
The answer is 10.857mJ
Explanation:
The energy stored in this solenoid is given by the below mentioned equation,

where L the inductance of this solenoid is given by the below mentioned equation,

Plugging this into the energy equation you obtain the equation for the total energy stored in the magnetic field of the solenoid, given by,

where
is the permeability of free space which equals to
. Plugging all the quantities into the above equation from the data in the question after converting to standard units. of meters instead of centimeters, we get for the energy stored in the coil,
