Answer:
D
Explanation:
<em>The correct answer would be in the axle of the wheels while you ride your bicycle.</em>
Options A, B, and C requires that the forces of friction is increased in order to have more control.
However, option D requires that there is a minimal frictional force in the axle of the wheels of a bicycle while riding so that a little effort would be required to keep the bicycle moving.
<u>The lesser the friction, the lower the effort that would be needed to keep the bicycle moving and vice versa.</u>
Answer:
7,14545 mph and 3,1936 m/s
Explanation:
The average speed is calculated by dividing the displacement over time, then it is 26,2 miles/(3 2/3 hours), here 3 (2/3) hours is a mixed number, that represents 11/3 hours or 3,66 hours. Then the average speed is 7,14545 mph, now to turn this into meters per second, we notice as mentioned that 1 mile =1609 meters and 1 hour=3600 seconds. Then 7,14545 miles/hour* (1 hour/3600 seconds) * (1609 meters/1 mile)=3,1936 m/s
The unit of height is:
Feet
Inches
Centimeters
Answer:
5.56 A
Explanation:
From the question,
Q = it.............. Equation 1
Where Q = charges, i = current, t = time.
Make i the subject of the equation
i = Q/t.............. Equation 2
Given: Q = 200 coulombs, t = 0.6 minutes = (0.6×60) seconds
Substitite these values into equation 2
i = 200/(0.6×60)
i = 5.56 A
Hence the magnitude of the current flowing through the circuit is 5.56 A
The impulse imparted to the shells equals the change in the momentum:
Fav*(Delta t)= Delta m*v.
The mass change is
Delta m= n*m= (89.9shells)*(88.7g)=7.97Kg
So the average force is
F=((v)*(Delta m))/t= ((929)*(7.97))/4.84=1529.78 N
Since the velocity of the shells is much greater than the velocity of the helicopter, there is no need to use relative velocity.