Answer:
The formula of the original halide is SrCl₂.
Explanation:
- The balanced equation of this reaction is:
SrX₂ + H₂SO₄ → SrSO₄ + 2 HX, where X is the halide.
- From the equation stichiometry, 1.0 mole of strontium halide will result in 1.0 mole of SrSO₄.
- The number of moles of SrSO₄ <em>(n = mass/molar mass) </em>= (0.755 g) / (183.68 g/mole) = 4.11 x 10⁻³ mole.
- The number of moles of SrX are 4.11 x 10⁻³ moles from the stichiometry of the balanced equation.
- n = mass / molar mass, n = 4.11 x 10⁻³ moles and mass = 0.652 g.
- The molar mass of SrX₂ = mass / n = (0.652) / (4.11 x 10⁻³ moles) = 158.62 g/mole.
- The molar mass of SrX₂ (158.62 g/mole) = Atomic mass of Sr (87.62 g/mole) + (2 x Atomic mass of halide X).
- The atomic mass of halide X = (158.62 g/mole) - (87.62 g/mole) / 2 = 71 / 2 g/mole = 35.5 g/mole.
- This is the atomic mass of Cl.
- <em>So, the formula of the original halide is SrCl₂</em>.
Answer:
False
Explanation:
It's classified as a dwarf planet, but not technically a planet.
Answer:
At equilibrium, the concentration of the reactants will be greater than the concentration of the products. This does not depend on the initial concentrations of the reactants and products.
Explanation:
The value of Kc gives us an idea of the extent of the reaction. A big Kc (Kc > 1) means that in the equilibrium there are more products than reactants, and the opposite happens for a small Kc (Kc < 1). The equilibrium is reached no matter what the initial concentrations are.
The value of the equilibrium constant is relatively SMALL; therefore, the concentration of reactants will be GREATER THAN the concentration of products. This result is INDEPENDENT OF the initial concentration of the reactants and products.
Answer:
The number of molecules is 1.4140*10^24 molecules
Explanation:
To know the number of molecules, we need to determine how many moles of water we have, water has molar mass of 18.015g/mol
This means that one mole of water molecules has a mass of 18.015g.
42.3g * 1 mole H2O/18.015g
= 2.3480 moles H2O
We are using avogadros number to find the number of molecules of water
2.3480 H2O * 6.022*10^ 23moles/ 1mole of H2O
That's 2.3480 multiplied by 6.022*10^23 divided by 1 mole of H2O
Number of molecules = 1.4140 *10^24 molecules