Given that the rate of diffusion is 1 mm per 1 second. then the time it travels in 1 cm can be solve using the formula
t = d / r
where d is the distance
r is the rate
first, 1 cm is equal to 10 mm
t = 10 mm / ( 1 mm / s )
t = 10 s
The empirical formula for the compound is - P₂O₅
the empirical formula is the simplest ratio of whole numbers of components in a compound.
molecular formula is the actual ratio of components in a compound.
we have to first find the number of empirical units in the molecular formula
molecular mass - 283.89 g/mol
mass of empirical formula - 283.8 g
number of empirical units - 283.89 g/mol / 283.8 g
number of empirical units - 1.000
therefore empirical formula = molecular formula
molecular formula - P₂O₅
Answer:
False
Explanation:
False. The molecules of liquid are hold in the liquid state due to intermolecular forces or Van de Waals forces , without affecting the molecule itself and its atomic bonds (covalent bonds). When the temperature increases the kinetic energy of the molecules is higher , therefore they have more possibilities to escape from the attractive intermolecular forces and go to the gas state.
Note however that this is caused because the intermolecular forces are really weak compared to covalent bonds, therefore is easier to break the first one first and go to the gas state before any covalent bond breaks ( if it happens).
A temperature increase can increase vaporisation rate if any reaction is triggered that decomposes the liquid into more volatile compounds , but nevertheless, this effect is generally insignificant compared with the effect that temperature has in vaporisation due to Van der Waals forces.
Answer:
Because of oxygen toxicity.
Explanation:
Oxygen toxicity.
Oxygen has been known to cause central nervous system (CNS) toxicity when the pressure gets higher. This toxicity can cause convulsions, and this can cause the diver to drown.
The current standard maximum safe oxygen working pressure is 1.4 atm ppO2. This is equal to 56.5m/185′ when breathing air (21% O2 / 79% N). Below that depth the fraction of oxygen in a breathing gas must be reduced, and in order to maintain this maximum pressure of 1.4 ppO2, Helium must be added.