Y2O3 is the molecular formula. Yttrium (III) oxide is also called yttria. It is a white substance and is air-stable. The usual application for this compound is a starting material for inorganic compounds and in material science. IT is insoluble in water and has a high melting point.
Answer:
a) Fe(s) + Ni^2+(aq) ----> Fe^2+(aq) + Ni(s)
b) no reaction
c) no reaction
d) 2Mg(s) + 2H2O(l)-----> 2Mg^2+(aq) + O2(g) +4H^+(aq)
e) no reaction
Explanation:
It is important to say here that the ability of a particular chemical specie to displace another chemical specie is dependent on the relative standard reduction potentials of the species involved.
All the reactions stated above are redox reactions. Let us take reaction E as an example. Mg^2+ has a reduction potential of -2.37 V while Cr^3+ has a reduction potential of -0.74V. Since the reduction potential of magnesium is more negative than that of chromium, there is no reaction when a piece of chromium metal is dipped into a solution of Mg^2+.
Similarly, though metals displace hydrogen gas from dilute acids, metals that are less than hydrogen in the reactivity series cannot do that. This explains why there is no reaction when copper and silver are dipped into dilute acid solutions.
Reaction occurs when iron is dipped into a nickel solution because the reduction potential of Fe^2+ is far more negative than that of Ni^2+.
First convert 0.163 grams of N2O to mol by dividing it with
the molecular weight. The molecular weight of N2O is 44 grams/mol. The answer
would be 3,79x10^-3. Then multiply it with 2 since there are 2 Nitrogen in one
mole of N2O. Therefore, there are 7.41x10^-3 moles of Nitrogen.
The correct answer should be C. Melting because if energy such as thermal energy is supplied to a solid such as ice then it would melt
It is completely dependent on the type of light bulb you are talking about. There are many different kinds of light bulbs, I cant give you a solid answer.