The most condensed state of matter is solid
The rate of disappearance of chlorine gas : 0.2 mol/dm³
<h3>Further explanation</h3>
The reaction rate (v) shows the change in the concentration of the substance (changes in addition to concentrations for reaction products or changes in concentration reduction for reactants) per unit time.
For reaction :

The rate reaction :
![\tt -\dfrac{1}{a}\dfrac{d[-A]}{dt}= -\dfrac{1}{b}\dfrac{d[-B]}{dt}=\dfrac{1}{c}\dfrac{d[C]}{dt}=\dfrac{1}{d}\dfrac{d[D]}{dt}](https://tex.z-dn.net/?f=%5Ctt%20-%5Cdfrac%7B1%7D%7Ba%7D%5Cdfrac%7Bd%5B-A%5D%7D%7Bdt%7D%3D%20-%5Cdfrac%7B1%7D%7Bb%7D%5Cdfrac%7Bd%5B-B%5D%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7Bc%7D%5Cdfrac%7Bd%5BC%5D%7D%7Bdt%7D%3D%5Cdfrac%7B1%7D%7Bd%7D%5Cdfrac%7Bd%5BD%5D%7D%7Bdt%7D)
Reaction for formation CCl₄ :
<em>CH₄+4Cl₂⇒CCl₄+4HCl</em>
<em />
From equation, rate of reaction = rate of formation CCl₄ = 0.05 mol/dm³
Rate of formation of CCl₄ = reaction rate x coefficient of CCCl₄
0.05 mol/dm³ = reaction rate x 1⇒reaction rate = 0.05 mol/dm³
The rate of disappearance of chlorine gas (Cl₂) :
Rate of disappearance of Cl₂ = reaction rate x coefficient of Cl₂
Rate of disappearance of Cl₂ = 0.05 x 4 = 0.2 mol/dm³
but heres a way to solve it
An athlete takes a deep breath, inhaling 1.85 L of air at 21°C and 754 mm Hg.
T
How many moles of air are in the breath? How many molecules?
Gas constant, R= 8.314 J mol ¹ K-1
PV = nRT
PV
RT
h=
=
P
= 0.08206 L atm mol-1 K-1
= 62.36 L Torr mol-1 K-1 -
1 atm = 760 mm Hg = 760 Torr
754 Forr 1.85€
6236 Jerr 294K
Answer:
half lives passed=5
given sample=90g
sample left=2.8125g
Explanation:
no. of half lives=total time/half life
no.=19days/3.8days
no.=5 days
after 5 half lives sample left=2.8125g