Answer:
Explanation:
The strong bases have following properties:
1. In solution, strong bases ionize fully.
2. On dissolving the strong bases in water they produce all hydroxide ion which they have.
3. For strong bases the value of equilibrium constant (Kb ) is large.
4. In general the strong base ionizes completely means concentration of ions are greater means conductivity also greater.
5. For strong bases the value of equilibrium constant (Kb) is large, thus the value of dG0 is very large negative number.
Answer:
<em>no</em><em> </em>
Explanation:
our heart muscles never get tired, because it has to pump blood in our body 72 times a minute, it is made of special cardiac muscles which helps it to perform it's function without getting tired ....
<em>i</em><em> </em><em>hope</em><em> </em><em>it</em><em> </em><em>helped</em><em>.</em><em>.</em><em>.</em><em>.</em><em>.</em>
N₂H₄ + 2H₂O₂ → N₂ + 4H₂O
mol = mass ÷ molar mass
If mass of hydrazine (N₂H₄) = 5.29 g
then mol of hydrazine = 5.29 g ÷ ((14 ×2) + (1 × 4))
= 0.165 mol
mole ratio of hydrazine to Nitogen is 1 : 1
∴ if moles of hydrazine = 0.165 mol
then moles of nitrogen = 0.165 mol
Mass = mol × molar mass
Since mol of nitrogen (N₂) = 0.165
then mass of hydrazine = 0.165 × (14 × 2)
= 4.62 g
Answer:
The answer to your question is
1.-Fe₂O₃
2.- 280 g
3.- 330 g
Explanation:
Data
mass of CO = 224 g
mass of Fe₂O₃ = 400 g
mass of Fe = ?
mass of CO₂
Balanced chemical reaction
Fe₂O₃ + 3CO ⇒ 2Fe + 3CO₂
1.- Calculate the molar mass of Fe₂O₃ and CO
Fe₂O₃ = (56 x 2) + (16 x 3) = 160 g
CO = 12 + 16 = 28 g
2.- Calculate the proportions
theoretical proportion Fe₂O₃ /3CO = 160/84 = 1.90
experimental proportion Fe₂O₃ / CO = 400/224 = 1.78
As the experimental proportion is lower than the theoretical, we conclude that the Fe₂O₃ is the limiting reactant.
3.- 160 g of Fe₂O₃ --------------- 2(56) g of Fe
400 g of Fe₂O₃ --------------- x
x = (400 x 112) / 160
x = 280 g of Fe
4.- 160 g of Fe₂O₃ --------------- 3(44) g of CO₂
400 g of Fe₂O₃ -------------- x
x = (400 x 132)/160
x = 330 gr
Answer:
calcium oxide is injected into the final stage of the scubber, wich then reacts with the sulfur dioxide to form calcium sulfite.
Explanation: