Answer:
The correct answer is option a.
Explanation:

Equilibrium concentration cadmium ions = ![[Cd^{2+}]=0.0585 M](https://tex.z-dn.net/?f=%5BCd%5E%7B2%2B%7D%5D%3D0.0585%20M)
Equilibrium concentration fluoride ions = ![[F^{-}]=0.117 M](https://tex.z-dn.net/?f=%5BF%5E%7B-%7D%5D%3D0.117%20M)
Molar solubility is the maximum concentration of salt present in water in ionic form beyond that no more salt will exist in its ionic form and will settle down in bottom of the solution.
The molar solubility of the solid cadmium fluoride = 0.0585 M
..[1]

Due to addition of sodium fluoride will increase concentration of fluoride in the solution.And due to common ion effect the equilibrium will shift in backward direction in [1], that is precipitation of more cadmium fluoride.
Hence, decrease in solubility will be observed.
1. The molar mass of the unknown gas obtained is 0.096 g/mol
2. The pressure of the oxygen gas in the tank is 1.524 atm
<h3>Graham's law of diffusion </h3>
This states that the rate of diffusion of a gas is inversely proportional to the square root of the molar mass i.e
R ∝ 1/ √M
R₁/R₂ = √(M₂/M₁)
<h3>1. How to determine the molar mass of the gas </h3>
- Rate of unknown gas (R₁) = 11.1 mins
- Rate of H₂ (R₂) = 2.42 mins
- Molar mass of H₂ (M₂) = 2.02 g/mol
- Molar mass of unknown gas (M₁) =?
R₁/R₂ = √(M₂/M₁)
11.1 / 2.42 = √(2.02 / M₁)
Square both side
(11.1 / 2.42)² = 2.02 / M₁
Cross multiply
(11.1 / 2.42)² × M₁ = 2.02
Divide both side by (11.1 / 2.42)²
M₁ = 2.02 / (11.1 / 2.42)²
M₁ = 0.096 g/mol
<h3>2. How to determine the pressure of O₂</h3>
From the question given above, the following data were obtained:
- Volume (V) = 438 L
- Mass of O₂ = 0.885 kg = 885 g
- Molar mass of O₂ = 32 g/mol
- Mole of of O₂ (n) = 885 / 32 = 27.65625 moles
- Temperature (T) = 21 °C = 21 + 273 = 294 K
- Gas constant (R) = 0.0821 atm.L/Kmol
The pressure of the gas can be obtained by using the ideal gas equation as illustrated below:
PV = nRT
Divide both side by V
P = nRT / V
P = (27.65625 × 0.0821 × 294) / 438
P = 1.524 atm
Learn more about Graham's law of diffusion:
brainly.com/question/14004529
Learn more about ideal gas equation:
brainly.com/question/4147359
Answer:
80mL
Explanation:
Step 1:
Data obtained from the question.
Initial Volume (V1) = 40mL
Initial temperature (T1) = –123°C
Final temperature (T2) = 27°C
Final volume (V2) =..?
Step 2:
Conversion of celsius temperature to Kelvin temperature.
T(K) = T(°C) + 273
Initial temperature (T1) = –123°C =
–123°C + 273 = 150K
Final temperature (T2) = 27°C = 27°C + 273 = 300K
Step 3:
Determination of the final volume.
This can be obtained as follow:
V1/T1 = V2/T2
Initial Volume (V1) = 40mL
Initial temperature (T1) = 150K
Final temperature (T2) = 300
Final volume (V2) =..?
V1/T1 = V2 /T2
40/150 = V2 /300
Cross multiply
150 x V2 = 40 x 300
Divide both side by 150
V2 = (40 x 300) /150
V2 = 80mL
Therefore, the new volume of the gas is 80mL
As warm moist air driven by the wind reaches the mountain it rises to higher altitudes where the temperature is cooler, causing the moisture to condense into clouds and drop as precipitation. On the leeward side the mountain shields the environment from the wind so the air is less likely to rise to higher altitudes. I think answer C.
Lithium ion has a charge of 1+
Calcium ion has a charge of 2+
Aluminum ion has a charge of 3+
Fluoride has a charge of 1-
Oxide has a charge of 2-