The initial velocity of the ball is 55.125 m/s.
<h3>Initial velocity of the ball</h3>
The initial velocity of the ball is calculated as follows;
During upward motion
h = vi - ¹/₂gt²
h = vi - 0.5(9.8)(3²)
h = vi - 44.1 ----------------- (1)
During downward motion
h = vi + ¹/₂gt²
h = 0 + 0.5(9.8)(1.5)²
h = 11.025 ----------- (2)
solve (1) and (2) together, to determine the initial velocity of the ball
11.025 = vi - 44.1
vi = 11.025 + 44.1
vi = 55.125 m/s
Thus, the initial velocity of the ball is 55.125 m/s.
Learn more about initial velocity here: brainly.com/question/19365526
#SPJ1
Answer:
medium
Explanation:
<em>A sound </em><em>medium</em><em> is defined as channel through which sound can travel or be transmitted. </em>
Sound medium could be in the form gases, liquids, solids or plasmas. Space is made up of vacuum and therefore, has no medium within it. Hence, space cannot transmit sound in any form or allows sound to travel through it.
Answer:Coulomb's law states that: The magnitude of the electrostatic force of attraction or repulsion between two point charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them.
Explanation:Coulomb's law, or Coulomb's inverse-square law, is an experimental law of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventionally called electrostatic force or Coulomb force
Answer
Explanation:
The question was incomplete as the events are not given in the question. However the answer to your question is given as follows. The correct order of the events from youngest (top) to oldest (bottom) is given as follows.
Moon formation
↑
Earth formation
↑
Nuclear fusion in protosun
↑
BigBang
===> Distance fallen from rest in free fall =
(1/2) (acceleration) (time²)
(122.5 m) = (1/2) (9.8 m/s²) (time²)
Divide each side by (4.9 m/s²): (122.5 m / 4.9 m/s²) = time²
(122.5/4.9) s² = time²
Take the square root of each side: 5.0 seconds
===> (Accelerating at 9.8 m/s², he will be dropping at
(9.8 m/s²) x (5.0 s) = 49 m/s
when he goes 'splat'. We'll need this number for the last part.)
===> With no air resistance, the horizontal component of velocity
doesn't change.
Horizontal distance = (10 m/s) x (5.0 s) = 50 meters .
===> Impact velocity = (10 m/s horizontally) + (49 m/s vertically)
= √(10² + 49²) = 50.01 m/s arctan(10/49)
= 50.01 m/s at 11.5° from straight down,
away from the base of the cliff.