Answer:
v = 15 m / s
Explanation:
In this exercise we are given the position function
x = 5 t²
and we are asked for the average velocity in an interval between t = 0 and t= 3 s, which is defined by the displacement between the time interval
let's look for the displacements
t = 0 x₀ = 0 m
t = 3
= 5 3 2
x_{f} = 45 m
we substitute

v = 15 m / s
Answer:
a) 
b) 
c) 
Explanation:
From the question we are told that:
Given Frequencies
a. 100 Hz,
b. 1 kHz,
c. 100 kHz.
Generally the equation for Waveform Period is mathematically given by

Therefore
a)
For



b)
For



c)
For



Answer:
0.699 L of the fluid will overflow
Explanation:
We know that the change in volume ΔV = V₀β(T₂ - T₁) where V₀ = volume of radiator = 21.1 L, β = coefficient of volume expansion of fluid = 400 × 10⁻⁶/°C
and T₁ = initial temperature of radiator = 12.2°C and T₂ = final temperature of radiator = 95.0°C
Substituting these values into the equation, we have
ΔV = V₀β(T₂ - T₁)
= 21.1 L × 400 × 10⁻⁶/°C × (95.0°C - 12.2°C)
= 21.1 L × 400 × 10⁻⁶/°C × 82.8°C = 698832 × 10⁻⁶ L
= 0.698832 L
≅ 0.699 L = 0.7 L to the nearest tenth litre
So, 0.699 L of the fluid will overflow
Answer:
Explanation:
We know the frequency and the velocity, both of which have good units. All we have to do is rearrange the equation and solve for
λ
:
λ
=
v
f
Let's plug in our given values and see what we get!
λ
=
340
m
s
440
s
−
1
λ
=
0.773
m
According to Ohm's law for a portion of the circuit we have:
U=RI=>I=U/R=24/3=8 A
The correct answer is B