1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
swat32
1 year ago
5

A girl holds an arrow in her hands, ready to shoot the arrow at a dragon who is just outside her arrow’s range of 45 meters. The

girl then slides down a cliffside, giving her a velocity of 8.5 m/s at an angle of 45 below the horizontal. She points her bow 30 degrees above the horizontal and shoots, the arrow leaves the bow with a velocity of 45 m/s. The girl is 55 meters away from the dragon horizontally. How far above the girl is the dragon? (Assuming the arrow hits.)I already figured out how long it takes for the arrow to reach the dragon (4.72 seconds) but I don’t know how to calculate the distance between the girl and the dragon. Please help!

Physics
1 answer:
gregori [183]1 year ago
6 0

First, assume that the arrow leaves the bow with a velocity of 45 m/s above the horizontal with respect to the bow.

Since the bow is moving at 8.5 m/s 45º below the horizontal, find the initial velocity of the arrow with respect to the ground:

\vec{v}_{AG}=\vec{v}_{AB}+\vec{v}_{BG}

This equation reads:

<em>The velocity of the arrow with respect to the ground </em><em>is equal to</em><em> the velocity of the arrow with respect to the bow </em><em>plus</em><em> the velocity of the bow with respect to the gound.</em>

Notice that this is a vector equation. Then, the vertical and horizontal components of the velocities must be added separately:

\begin{gathered} v_{AG-x}=v_{AB-x}+v_{BG-x} \\ v_{AG-y}=v_{AB-y}+v_{BG-y} \end{gathered}

Find the vertical and horizontal components of the velocity of the arrow with respect to the bow and the velocity of the bow with respect to the ground:

\begin{gathered} v_{AB-x}=v_{AB}\cos (\theta) \\ =45\frac{m}{s}\cdot\cos (30º) \\ =38.97\frac{m}{s} \end{gathered}

\begin{gathered} v_{AB-y}=v_{AB}\sin (\theta) \\ =45\frac{m}{s}\sin (30º) \\ =22.5\frac{m}{s} \end{gathered}

Similarly, for the velocity of the bow with respect to the ground:

\begin{gathered} v_{BG-x}=6.01\frac{m}{s} \\ v_{BG-y}=-6.01\frac{m}{s} \end{gathered}

Then, the vertical and horizontal components of the initial velocity of the arrow with respect to the ground, are:

\begin{gathered} v_{AG-x}=38.97\frac{m}{s}+6.01\frac{m}{s}=44.98\frac{m}{s} \\  \\ v_{AG-y}=22.5\frac{m}{s}-6.01\frac{m}{s}=16.49\frac{m}{s} \end{gathered}

Use the horizontal component of the velocity to find how long it takes for the arrow to travel a horizontal distance x of 55 meters. Then, use that time to find the vertical position of the arrow.

Since the horizontal movement of the arrow is uniform, then:

v_{AG-x}=\frac{x}{t}_{}

Isolate t and substitute x=55m, v_{AG-x}=44.98 m/s:

\begin{gathered} t=\frac{x}{v_{AG-x}} \\ =\frac{55m}{44.98\frac{m}{s}} \\ =1.2227s \end{gathered}

The vertical motion of the arrow is a uniformly accelerated motion. Then, the vertical position is given by:

y=v_{AG-y}t-\frac{1}{2}gt^2

Replace v_{AG-y}=16.49 m/s, t=1.2227s and g=9.81 m/s^2 to find the vertical position of the arrow when the horizontal position is 55 meters. This matches the elevation of the dragon with respect to the girl when the girl shoots:

\begin{gathered} y=(16.49\frac{m}{s})(1.2227s)-\frac{1}{2}(9.81\frac{m}{s^2})(1.2227s)^2 \\ =12.829\ldots m \\ \approx12.8m \end{gathered}

Therefore, the dragon is 12.8 meters above the girl when the arrow is shoot.

You might be interested in
How well a student reads can most likely be effected by
Burka [1]
Their cognitive skills and their ability to learn
3 0
2 years ago
How would you write the number 6,500,000,000 in scientific notation?
photoshop1234 [79]
Scientific form = 6.5 x 109.
8 0
3 years ago
Abishek is a runner. He runs the 100 m sprint
konstantin123 [22]

Answer:

1.67m/s

Explanation:

Total Distance to be travelled by a Runner=100m

Time Taken=10*6s

Speed=Distance/Time

=100/10*6=10/6=1.67m/s

3 0
3 years ago
Read 2 more answers
Global Precipitation Measurement (GPM) is a tool scientists use to forecast weather. Which statements describe GPM? Select three
lyudmila [28]

Answer:

B.It is a satellite that collects data about rain and snow

C.Its orbit covers 90 percent of Earth’s surface

F.The sensors measure microwaves

5 0
3 years ago
PLEWSE SOMEONE HELP ILL MARK BRAINLIST
Margaret [11]

Answer:

D)

Explanation:

ffhjjxghjjcdddhhgfd

Brainliest pls ❤️

3 0
2 years ago
Read 2 more answers
Other questions:
  • A student produces a wave in a long spring by
    14·1 answer
  • Electric current flows through a long rod generating thermal energy at a uniform volumetric rate of
    12·1 answer
  • A woman steps in front of a child to keep him from running off. which term best describes this example? negative work positive w
    9·2 answers
  • You put a new battery into your MP3 player and listen to a song. What are the energy transformations taking place in this system
    11·1 answer
  • A 20-ton truck collides with a 1500-lb car and causes a lot of damage to the car. During the collision:
    9·1 answer
  • SECTION B<br>THEORY QUESTIONS<br>(1a) Define the following<br>(a) Work:​
    6·1 answer
  • A device that measures potential is a(n) circuit.
    10·1 answer
  • What made the Fertile Crescent a good place for growing crops
    5·2 answers
  • The atomic number of beryllium (Be) is 4, and the atomic number of barium (Ba) is 56. Which comparison is best supported by this
    5·2 answers
  • A drawn or written record of star groups in the night sky are called
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!