1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
swat32
1 year ago
5

A girl holds an arrow in her hands, ready to shoot the arrow at a dragon who is just outside her arrow’s range of 45 meters. The

girl then slides down a cliffside, giving her a velocity of 8.5 m/s at an angle of 45 below the horizontal. She points her bow 30 degrees above the horizontal and shoots, the arrow leaves the bow with a velocity of 45 m/s. The girl is 55 meters away from the dragon horizontally. How far above the girl is the dragon? (Assuming the arrow hits.)I already figured out how long it takes for the arrow to reach the dragon (4.72 seconds) but I don’t know how to calculate the distance between the girl and the dragon. Please help!

Physics
1 answer:
gregori [183]1 year ago
6 0

First, assume that the arrow leaves the bow with a velocity of 45 m/s above the horizontal with respect to the bow.

Since the bow is moving at 8.5 m/s 45º below the horizontal, find the initial velocity of the arrow with respect to the ground:

\vec{v}_{AG}=\vec{v}_{AB}+\vec{v}_{BG}

This equation reads:

<em>The velocity of the arrow with respect to the ground </em><em>is equal to</em><em> the velocity of the arrow with respect to the bow </em><em>plus</em><em> the velocity of the bow with respect to the gound.</em>

Notice that this is a vector equation. Then, the vertical and horizontal components of the velocities must be added separately:

\begin{gathered} v_{AG-x}=v_{AB-x}+v_{BG-x} \\ v_{AG-y}=v_{AB-y}+v_{BG-y} \end{gathered}

Find the vertical and horizontal components of the velocity of the arrow with respect to the bow and the velocity of the bow with respect to the ground:

\begin{gathered} v_{AB-x}=v_{AB}\cos (\theta) \\ =45\frac{m}{s}\cdot\cos (30º) \\ =38.97\frac{m}{s} \end{gathered}

\begin{gathered} v_{AB-y}=v_{AB}\sin (\theta) \\ =45\frac{m}{s}\sin (30º) \\ =22.5\frac{m}{s} \end{gathered}

Similarly, for the velocity of the bow with respect to the ground:

\begin{gathered} v_{BG-x}=6.01\frac{m}{s} \\ v_{BG-y}=-6.01\frac{m}{s} \end{gathered}

Then, the vertical and horizontal components of the initial velocity of the arrow with respect to the ground, are:

\begin{gathered} v_{AG-x}=38.97\frac{m}{s}+6.01\frac{m}{s}=44.98\frac{m}{s} \\  \\ v_{AG-y}=22.5\frac{m}{s}-6.01\frac{m}{s}=16.49\frac{m}{s} \end{gathered}

Use the horizontal component of the velocity to find how long it takes for the arrow to travel a horizontal distance x of 55 meters. Then, use that time to find the vertical position of the arrow.

Since the horizontal movement of the arrow is uniform, then:

v_{AG-x}=\frac{x}{t}_{}

Isolate t and substitute x=55m, v_{AG-x}=44.98 m/s:

\begin{gathered} t=\frac{x}{v_{AG-x}} \\ =\frac{55m}{44.98\frac{m}{s}} \\ =1.2227s \end{gathered}

The vertical motion of the arrow is a uniformly accelerated motion. Then, the vertical position is given by:

y=v_{AG-y}t-\frac{1}{2}gt^2

Replace v_{AG-y}=16.49 m/s, t=1.2227s and g=9.81 m/s^2 to find the vertical position of the arrow when the horizontal position is 55 meters. This matches the elevation of the dragon with respect to the girl when the girl shoots:

\begin{gathered} y=(16.49\frac{m}{s})(1.2227s)-\frac{1}{2}(9.81\frac{m}{s^2})(1.2227s)^2 \\ =12.829\ldots m \\ \approx12.8m \end{gathered}

Therefore, the dragon is 12.8 meters above the girl when the arrow is shoot.

You might be interested in
Will give brainliest to right answer!
viva [34]
The correct answer is D.
8 0
3 years ago
A mouse jumps horizontally from a box of height 0.25m.  If the mouse jumps with a speed of 2.1 m/s, how far from the box does th
Sladkaya [172]

The mouse would land 0.47 m away from the box.

3 0
3 years ago
Read 2 more answers
Which phrase describes speed?
Anna11 [10]

Answer:

the answer is B

Explanation:

speed is the rate at which the distance covered changes or the distance divided by the time taken.

scalar is always positive.

6 0
3 years ago
Read 2 more answers
A Smart Car, which has a mass of 1000 kg, is going 20 m/s. When it hits the barrier, it stops with a time of 0.5 seconds. What i
Fudgin [204]

Answer:

need points sorry god bless

Explanation:

3 0
3 years ago
Ava runs track and field and is a long-distance runner. She has a big race coming up and needs to eat food that will provide her
Tema [17]
A salad most likely
4 0
3 years ago
Read 2 more answers
Other questions:
  • Moving at 3.2m/s slows down after 32 seconds moving at 1.2m/s<br> What is his acceleration?
    7·1 answer
  • By what factor does the drag force on a car increase as it goes from 65 to 110 km/h?
    8·2 answers
  • Aless-intense wave will have fewer<br> than a more-intense wave.
    13·1 answer
  • How strongly the planet you're on pulls on you is your
    7·2 answers
  • the force of friction between a 1000 kg car and the road is 10000 N, what is the fastest acceleration the car can achieve?​
    5·2 answers
  • The diagram shows the electric field lines around two charges. Based on the field lines, what is the best description of the cha
    14·2 answers
  • SCIENCE
    15·2 answers
  • Hi.
    11·1 answer
  • Describe how an oscilloscope should be used to measure the frequency of the sound wave from the sonometer
    9·1 answer
  • What do i do for #17
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!