Before we describe the phases of the Moon, let's describe what they're not. Some people mistakenly believe the phases come from Earth's shadow cast on the Moon. Others think that the Moon changes shape due to clouds. These are common misconceptions, but they're not true. Instead, the Moon's phase depends only on its position relative to Earth and the Sun.
The Moon doesn't make its own light, it just reflects the Sun's light as all the planets do. The Sun always illuminates one half of the Moon. Since the Moon is tidally locked, we always see the same side from Earth, but there's no permanent "dark side of the Moon." The Sun lights up different sides of the Moon as it orbits around Earth – it's the fraction of the Moon from which we see reflected sunlight that determines the lunar phase.
Find the number of moles
C = n / V
C(Concentration) = 0.30 moles / L
V ( Volume) = 2 L
n = ??
n = C * V
n = 0.30 mol / L * 2 L
n = 0.60 mol
Find the molar mass
2Na = 23 * 2 = 46 grams
1S = 32 * 1 = 32 grams
O4 = 16 * 4 = 64 grams
Total = 142 grams / mol
Find the mass
n = given mass / molar mass
n = 0.06 mol
molar Mass = 142 grams / mol
given mass = ???
given mass = molar mass * mols
given mass = 142 * 0.6
given mass = 85.2 grams.
85.2 are in a 2 L solution that has a concentration of 0.6 mol/L
Answer:
Hence option C is correct.
Explanation:
the process is osmosis a process by which molecules of a solvent tend to pass through a semipermeable membrane from a less concentrated solution into a more concentrated one.
so the answer for the this question will be There is a net flow of water from the 4% starch solution into the 10% starch solution because solvent (water) moving from low conc. (4 %) to high conc. (10%)
Hence option C is correct.
Answer: -
H₂ will diffuse the fastest.
Explanation: -
According to Graham's Law of Diffusion
The rate of diffusion is inversely proportional to the square root of it's density or molar mass. So the lower the molar mass faster the rate of diffusion.
Molar mass of Ne = 20 g / mol
Molar mass of CH₄ = 12 x 1 + 1 x 4 = 16 g /mol
Molar mass of Ar = 40g / mol
Molar mass of H₂ = 1 x 2 = 2 g / mol
Thus H₂ will diffuse the fastest.
Answer:
V₂ = 2.91 L
Explanation:
Given data:
Initial volume = 3.50 L
Initial temperature = 90.0°C (90+273 = 363 K)
Final temperature = 30.0 °C ( 30 +273 = 303 K)
Final volume = ?
Solution:
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
V₁/T₁ = V₂/T₂
3.50 L / 363 K) = V₂ / 303 K)
V₂ = 0.0096 L/K × 303 K
V₂ = 2.91 L