Answer:
(1)There are 1.5 moles of water in a 27 gram sample of water. The molar mass of water is 18.02 gmol g m o l .(2)
AnswersChemistryGCSEArticle
What is the mass (g) of 0.25mols of NaCl?
What you need for these equations are a calculator, periodic table and the following equation:
Mass (g) = Mr x Moles (important equation to remember)
In this case we already know the moles as it's in the question, 0.25 moles.
to find the Mr, you need to look at your periodic table. Find the relative atomic mass of Na and Cl and add the two numbers together.
Na = 22.99
Cl = 35.45
NaCl = 58.4
Now just put all of the numbers into the equation.
0.25 x 58.4 = 14.6g
The bromide concentration in this solution of calcium bromide dissolved in enough water to give 469.1 mL is 1.75 × 10-⁵M.
<h3>How to calculate concentration?</h3>
The concentration of a solution can be calculated by dividing the number of moles of the substance by its volume.
No of moles of calcium bromide is calculated as follows:
moles = 1.642 ÷ 199.89 = 8.215 × 10-³moles
Molarity = 8.215 × 10-³moles ÷ 469.1mL = 1.75 × 10-⁵M
Therefore, the bromide concentration in this solution of calcium bromide dissolved in enough water to give 469.1 mL is 1.75 × 10-⁵M.
Learn more about concentration at: brainly.com/question/10725862
#SPJ1
Answer:
118
Explanation:
Of these 118 elements, 94 occur naturally on Earth. Six of these occur in extreme trace quantities: technetium, atomic number 43; promethium, number 61; astatine, number 85; francium, number 87; neptunium, number 93; and plutonium, number 94.
Answer:
put a salt into the beakers
Explanation:
Sugar - Pure substance
Magnesium Ribbon - Pure Substance
Vegetable soup Heterogeneous mixture
Bath oil - Homogeneous mixture
Tin of assorted biscuits - Heterogeneous mixture
Peanuts and raisins - Heterogeneous mixture
Copper wire - Pure Substance
Bicarbonate of soda (Baking soda) - Pure Substance