Answer:- 3.12 g carbon tetrachloride are needed.
Solution:- The balanced equation is:
From given actual yield and percent yield we will calculate the theoretical yield that would be further used to calculate the grams of carbon tetrachloride.
percent yield formula is:
percent yield =
theoretical = 3.44 g
From balanced equation, there is 2:1 mol ratio between dichloethane and carbon tetrachloride.
Molar mass of dichloroethane is 84.93 gram per mol and molar mass of carbon tetrachloride is 153.82 gram per mol.
=
So, 3.12 grams of carbon tetrachloride are needed to be reacted.
Answer:
As the y-intercept increases, the graph of the line shifts up;
As the y-intercept decreases, the graph of the line shifts down
Explanation:
There are two ways to think about this problem. The first way would be the graphical approach:
- if we only change the y-intercept, this means we keep the same slope;
- y-axis is the vertical axis;
- if we change the point at which the line crosses the y-axis, we either shift it upward for a higher y-intercept or downward for a lower y-intercept.
Now, thinking algebraically, a line has the following equation in a general form:
The y-intercept is essentially obtained when x = 0, then:
y = b:
- if we increase b value, the y value increases, so the graph shifts upward;
- if we decrease b value, the y value decreases, so the graph shifts downward.
Emperic formula is SO subscript 2. Molecular formula would be SO subscript 2 multiply 1 so it's the same answer.
yes
Explanation:
the molar mass of a compound is g/mol
Answer:
16 N
Explanation:
The ratio of output force to the input force is called mechanical advantage of the lever. Also, the ratio of input arm distance to the output arm distance is called mechanical advantage of the lever.
We have,
Input force = 8 N
Input arm distance = 6 m
Output arm distance = 3 m
We need to find the resulting output force. So,
So, the resulting output force is 16 N.