
Heat capacity of body 1 :

Heat capacity of body 2 :

it's given that, the the head capacities of both the objects are equal. I.e


Now, consider specific heat of composite body be s'
According to given relation :



[ since,
]




➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖➖
Matter, substance. Material howya call it.
Answer: When the electric field due to one is a maximum, the electric field due to the other is also a maximum, and this relation is maintained as time passes. They alternatively reinforce and cancel each other.
Explanation:
In a wave, the phase, is an arbitrary time reference, used to locate a given point of the wave in time, within a cycle.
Two waves can travel at the same speed, or even have the same wavelength, but this is not enough to be sure that at a given point in time, both waves will be in their maximum, as it only can be determined from the phase of the waves.
So, only when the waves reach at the same point in time at the same amplitude, we can say that they arrive in phase, in a constructive interference.
Answer:
A) 17.7 m/s
B) 15.98 m
C) Zero
E) 9.8 m/s²
Explanation:
given information
distance, h = - 34 m
time, t = 5 s
A) What is the initial speed of the egg?
h - h₀ = v₀t -
t², h₀ = 0
- 34 = v₀ 5 - \frac{1}{2} 9.8 5²
- 34 = 5 v₀ - 122.5
v₀ = 122.5 - 34/5
= 17.7 m/s
B) How high does it rise above its starting point?
v² = v₀² - 2gh
v = 0 (highest point)
2gh = v₀²
h = v₀²/2g
= 17.7²/2 (9.8)
= 15.98 m
C) What is the magnitude of its velocity at the highest point?
v = 0 (at highest point)
E) What are the magnitude and direction of its acceleration at the highest point?
g= 9.8 m/s², since the egg is moved vertically, the acceleration is the same as the gravitational acceleration.
Answer: the image distance is -18, 28 cm this means behind of the concave mirror. The image size is 2.2 higher that the original so it has 8.8 cm with the same orientation as original and it is a virtual imagen.
Explanation: In order to sove the imagen formation for a concave mirror we have to use the following equation:
1/p+1/q=1/f where p and q represents the distance to the mirror for the object and imagen, respectively. f is the focal length for the concave mirror.
replacing the values we obtain:
1/8.3+1/q=1/15.2
so 1/q=(1/15.2)-(1/8.3)=-54.7*10^-3
then q=-18.28 cm
The magnification is given by M=-q/p=-(-18,28)/8.3= 2.2
We also add a picture to see the imagen formation for this case.