Answer:
Just answered this to confirm my profile.
Explanation:
I dont have a clue, this is just to confirm my profile.
Answer:
a)
, b) 
Explanation:
a) The counterflow heat exchanger is presented in the attachment. Given that cold water is an uncompressible fluid, specific heat does not vary significantly with changes on temperature. Let assume that cold water has the following specific heat:

The effectiveness of the counterflow heat exchanger as a function of the capacity ratio and NTU is:

The capacity ratio is:



Heat exchangers with NTU greater than 3 have enormous heat transfer surfaces and are not justified economically. Let consider that
. The efectiveness of the heat exchanger is:


The real heat transfer rate is:




The exit temperature of the hot fluid is:




The log mean temperature difference is determined herein:



The heat transfer surface area is:



Length of a single pass counter flow heat exchanger is:



b) Given that tube wall is very thin, inner and outer heat transfer areas are similar and, consequently, the cold side heat transfer coefficient is approximately equal to the hot side heat transfer coefficient.

That is too hard but u got that cuz i believe in you!!!
Answer:
And Im still going with B..
Answer:
<em>The direction of ball will be Number 4 (as can be seen in attached picture) ---- the path of ball will be making some angle when it leaves the tube. </em>
Explanation:
The question is incomplete. So the picture, which is missing in question, is attached for your review.
As it can be seen in the picture, the ball coming out of the tube will have two components of velocity. One is along the length of tube (because ball is moving in that direction and is coming out from the hole), other is velocity component will be perpendicular to the tube (because the ball is made to move in that direction as the tube is rolling on the surface).
<em>So, taking the resultant of two vectors of velocity, the resultant direction of ball will be Number 4 (as can be seen in attached picture) ---- the path of ball will be making some angle when it leaves the tube. </em>