Answer:
Explanation:
The pressures given are relative
p1 = 2000 psi
P1 = 2014 psi = 13.9 MPa
p2 = 4 psi
P2 = 18.6 psi = 128 kPa
Values are taken from the steam pressure-enthalpy diagram
h2 = 2500 kJ/kg
If the output of the turbine has a quality of 85%:
t2 = 106 C
I consider the expansion in the turbine to adiabatic and reversible, therefore, isentropic
s1 = s2 = 6.4 kJ/(kg K)
h1 = 3500 kJ/kg
t2 = 550 C
The work in the turbine is of
w = h1 - h2 = 3500 - 2500 = 1000 kJ/kg
The thermal efficiency of the cycle depends on the input heat.
η = w/q1
q1 is not a given, so it cannot be calculated.
Answer:
Absolute viscosity is the evaluation of the resistance (INTERNAL) of the fluid flow
Kinematic viscosity relates to the dynamic viscosity and density proportion.
SUS stands for Sabolt Universal Seconds. it is units which described the variation of oil viscosity
Explanation:
Absolute viscosity is the evaluation of the resistance (INTERNAL) of the fluid flow, whereas Kinematic viscosity relates to the dynamic viscosity and density proportion. fluid with distinct kinematic viscosities may have similar dynamic viscosities and vice versa.Dynamic viscosity provides you details of power required to make the fluid flow at some rate, however kinematic viscosity shows how quick the fluid moves when applying a certain force.
SUS stands for Sabolt Universal Seconds. it is units which described the variation of oil viscosity when change with change in temperature. it is measured by using viscosimeter.
Answer:
q=39.15 W/m²
Explanation:
We know that
Thermal resistance due to conductivity given as
R=L/KA
Thermal resistance due to heat transfer coefficient given as
R=1/hA
Total thermal resistance

Now by putting the values


We know that
Q=ΔT/R


So heat transfer per unit volume is 39.15 W/m²
q=39.15 W/m²