1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RideAnS [48]
3 years ago
12

2. A counter flow tube-shell heat exchanger is used to heat a cold water stream from 18 to 78oC at a flow rate of 1 kg/s. Heatin

g is provided by a superhot water stream in the shell at 160oC flowing at 1.8 kg/s. Inner tube diameter is 1.4 cm while the tube wall is very thin. Overall heat transfer coefficient based on the inner tube is 630 W/m2 K. Assume constant water properties in the cold stream; use values at 320K. The cp value for the hot stream is 4.30 kJ/kg K. (30%) a. Determine the length of the heat exchanger using the ε-NTU method; b. Estimate the cold side heat transfer coefficient.

Engineering
1 answer:
Anastaziya [24]3 years ago
5 0

Answer:

a) L = 220\,m, b) U_{o} \approx 0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C}

Explanation:

a) The counterflow heat exchanger is presented in the attachment. Given that cold water is an uncompressible fluid, specific heat does not vary significantly with changes on temperature. Let assume that cold water has the following specific heat:

c_{p,c} = 4.186\,\frac{kJ}{kg\cdot ^{\textdegree}C}

The effectiveness of the counterflow heat exchanger as a function of the capacity ratio and NTU is:

\epsilon = \frac{1-e^{-NTU\cdot(1-c)}}{1-c\cdot e^{-NTU\cdot (1-c)}}

The capacity ratio is:

c = \frac{C_{min}}{C_{max}}

c = \frac{(1\,\frac{kg}{s} )\cdot(4.186\,\frac{kW}{kg^{\textdegree}C} )}{(1.8\,\frac{kg}{s} )\cdot(4.30\,\frac{kW}{kg^{\textdegree}C} )}

c = 0.541

Heat exchangers with NTU greater than 3 have enormous heat transfer surfaces and are not justified economically. Let consider that NTU = 2.5. The efectiveness of the heat exchanger is:

\epsilon = \frac{1-e^{-(2.5)\cdot(1-0.541)}}{1-(2.5)\cdot e^{-(2.5)\cdot (1-0.541)}}

\epsilon \approx 0.824

The real heat transfer rate is:

\dot Q = \epsilon \cdot \dot Q_{max}

\dot Q = \epsilon \cdot C_{min}\cdot (T_{h,in}-T_{c,in})

\dot Q = (0.824)\cdot (4.186\,\frac{kW}{^{\textdegree}C} )\cdot (160^{\textdegree}C-18^{\textdegree}C)

\dot Q = 489.795\,kW

The exit temperature of the hot fluid is:

\dot Q = \dot m_{h}\cdot c_{p,h}\cdot (T_{h,in}-T_{h,out})

T_{h,out} = T_{h,in} - \frac{\dot Q}{\dot m_{h}\cdot c_{p,h}}

T_{h,out} = 160^{\textdegree}C + \frac{489.795\,kW}{(7.74\,\frac{kW}{^{\textdegree}C} )}

T_{h,out} = 96.719^{\textdegree}C

The log mean temperature difference is determined herein:

\Delta T_{lm} = \frac{(T_{h,in}-T_{c, out})-(T_{h,out}-T_{c,in})}{\ln\frac{T_{h,in}-T_{c, out}}{T_{h,out}-T_{c,in}} }

\Delta T_{lm} = \frac{(160^{\textdegree}C-78^{\textdegree}C)-(96.719^{\textdegree}C-18^{\textdegree}C)}{\ln\frac{160^{\textdegree}C-78^{\textdegree}C}{96.719^{\textdegree}C-18^{\textdegree}C} }

\Delta T_{lm} \approx 80.348^{\textdegree}C

The heat transfer surface area is:

A_{i} = \frac{\dot Q}{U_{i}\cdot \Delta T_{lm}}

A_{i} = \frac{489.795\,kW}{(0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C} )\cdot(80.348^{\textdegree}C) }

A_{i} = 9.676\,m^{2}

Length of a single pass counter flow heat exchanger is:

L =\frac{A_{i}}{\pi\cdot D_{i}}

L = \frac{9.676\,m^{2}}{\pi\cdot (0.014\,m)}

L = 220\,m

b) Given that tube wall is very thin, inner and outer heat transfer areas are similar and, consequently, the cold side heat transfer coefficient is approximately equal to the hot side heat transfer coefficient.

U_{o} \approx 0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C}

You might be interested in
These are the most widely used tools and most often abuse tool​
Mars2501 [29]
Where is the picture in this problem? How am I supposed to answer if I can’t see any footage taken from this problem.
4 0
3 years ago
Read 2 more answers
16. Driverless cars have already , and they look so cool.
Gekata [30.6K]
Answer:
C. Exist
Hope it helps!
4 0
3 years ago
Read 2 more answers
While recharging a refrigerant system, the charging stops before the required amount of refrigerant has been inserted. What shou
zaharov [31]

Answer:

Answer C

Explanation:

That is the correct way.

7 0
3 years ago
Calculate how large a mass would be necessary to obtain a mechanical noise limit of [Equation] = 1 nG, 1 µG, and 1 mG if the mec
olga55 [171]

Answer:

Mechanical resonance frequency is the frequency of a system to react sharply when the frequency of oscillation is equal to its resonant frequency (natural frequency).

The physical dimension of the silicon is 10kg

Explanation:

Using the formular, Force, F = 1/2π√k/m

At resonance, spring constant, k = mw² ( where w = 2πf), when spring constant, k = centripetal force ( F = mw²r).

Hence, F = 1/2π√mw²/m = f ( f = frequency)

∴ f = F = mg, taking g = 9.8 m/s²

100 Hz = 9.8 m/s² X m

m = 100/9.8 = 10.2kg

6 0
3 years ago
We can process oil into a lot of useful fuels to run our cars, trucks, and even airplanes. Oil is used for making lots of other
Ostrovityanka [42]

Answer:

Explanation:

Products of oil in our everyday life:

(1) Petro-Chemical Feedstock: These are by product of Refining of Oil which it is used extensively to make PET bottles, Paints, Polyester Shirts, Pocket combs e.t.c

(2) Asphalt : Used extensively to make Motor Road, highways

(3) Plastics : we use plastics in our everyday life, this is also a product of Refining of crude oil e.g PVC, Telephone casing, Tapes e.t.c

(4) Lubricating Oil/Grease : This is another product from crude oil Fractional Distillation.

(5) Propane/ Cooking Gas: This is also a product from oil which is used in our everyday life for cooking, grilling etc.

4 0
3 years ago
Other questions:
  • Which of the following vehicles has no emissions?
    9·1 answer
  • 10. When an adhesion bond is made by melting a filler metal and allowing it to spread into the pores of the
    7·1 answer
  • he ventilating fan of the bathroom of a building has a volume flow rate of 28 L/s and runs continuously. If the density of air i
    9·1 answer
  • I study to get good grades because my parents want to send me to the college of my choice.” This is an a. Intrinsic motivational
    6·2 answers
  • Which of the following is a direct result of technological improvements in the music industry?
    9·2 answers
  • Which of the following justifies the need for an already-certified engineer to continue to take classes?
    15·1 answer
  • WILL MARK BRAINLIST I need help on this asap thanks
    15·1 answer
  • 3. Determine the most unfavorable arrangement of the crane loads and
    6·1 answer
  • Why do the quadrants in coordinate plane go anti-clockwise?.
    6·1 answer
  • What color is a board sternlight
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!