1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RideAnS [48]
3 years ago
12

2. A counter flow tube-shell heat exchanger is used to heat a cold water stream from 18 to 78oC at a flow rate of 1 kg/s. Heatin

g is provided by a superhot water stream in the shell at 160oC flowing at 1.8 kg/s. Inner tube diameter is 1.4 cm while the tube wall is very thin. Overall heat transfer coefficient based on the inner tube is 630 W/m2 K. Assume constant water properties in the cold stream; use values at 320K. The cp value for the hot stream is 4.30 kJ/kg K. (30%) a. Determine the length of the heat exchanger using the ε-NTU method; b. Estimate the cold side heat transfer coefficient.

Engineering
1 answer:
Anastaziya [24]3 years ago
5 0

Answer:

a) L = 220\,m, b) U_{o} \approx 0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C}

Explanation:

a) The counterflow heat exchanger is presented in the attachment. Given that cold water is an uncompressible fluid, specific heat does not vary significantly with changes on temperature. Let assume that cold water has the following specific heat:

c_{p,c} = 4.186\,\frac{kJ}{kg\cdot ^{\textdegree}C}

The effectiveness of the counterflow heat exchanger as a function of the capacity ratio and NTU is:

\epsilon = \frac{1-e^{-NTU\cdot(1-c)}}{1-c\cdot e^{-NTU\cdot (1-c)}}

The capacity ratio is:

c = \frac{C_{min}}{C_{max}}

c = \frac{(1\,\frac{kg}{s} )\cdot(4.186\,\frac{kW}{kg^{\textdegree}C} )}{(1.8\,\frac{kg}{s} )\cdot(4.30\,\frac{kW}{kg^{\textdegree}C} )}

c = 0.541

Heat exchangers with NTU greater than 3 have enormous heat transfer surfaces and are not justified economically. Let consider that NTU = 2.5. The efectiveness of the heat exchanger is:

\epsilon = \frac{1-e^{-(2.5)\cdot(1-0.541)}}{1-(2.5)\cdot e^{-(2.5)\cdot (1-0.541)}}

\epsilon \approx 0.824

The real heat transfer rate is:

\dot Q = \epsilon \cdot \dot Q_{max}

\dot Q = \epsilon \cdot C_{min}\cdot (T_{h,in}-T_{c,in})

\dot Q = (0.824)\cdot (4.186\,\frac{kW}{^{\textdegree}C} )\cdot (160^{\textdegree}C-18^{\textdegree}C)

\dot Q = 489.795\,kW

The exit temperature of the hot fluid is:

\dot Q = \dot m_{h}\cdot c_{p,h}\cdot (T_{h,in}-T_{h,out})

T_{h,out} = T_{h,in} - \frac{\dot Q}{\dot m_{h}\cdot c_{p,h}}

T_{h,out} = 160^{\textdegree}C + \frac{489.795\,kW}{(7.74\,\frac{kW}{^{\textdegree}C} )}

T_{h,out} = 96.719^{\textdegree}C

The log mean temperature difference is determined herein:

\Delta T_{lm} = \frac{(T_{h,in}-T_{c, out})-(T_{h,out}-T_{c,in})}{\ln\frac{T_{h,in}-T_{c, out}}{T_{h,out}-T_{c,in}} }

\Delta T_{lm} = \frac{(160^{\textdegree}C-78^{\textdegree}C)-(96.719^{\textdegree}C-18^{\textdegree}C)}{\ln\frac{160^{\textdegree}C-78^{\textdegree}C}{96.719^{\textdegree}C-18^{\textdegree}C} }

\Delta T_{lm} \approx 80.348^{\textdegree}C

The heat transfer surface area is:

A_{i} = \frac{\dot Q}{U_{i}\cdot \Delta T_{lm}}

A_{i} = \frac{489.795\,kW}{(0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C} )\cdot(80.348^{\textdegree}C) }

A_{i} = 9.676\,m^{2}

Length of a single pass counter flow heat exchanger is:

L =\frac{A_{i}}{\pi\cdot D_{i}}

L = \frac{9.676\,m^{2}}{\pi\cdot (0.014\,m)}

L = 220\,m

b) Given that tube wall is very thin, inner and outer heat transfer areas are similar and, consequently, the cold side heat transfer coefficient is approximately equal to the hot side heat transfer coefficient.

U_{o} \approx 0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C}

You might be interested in
What is Pressure measured from absolute zero pressure called?
7nadin3 [17]
Anything greater than total vacuum is technically a form of pressure
5 0
3 years ago
True or false? if i were to hook up an ac voltage source to a resistor, the voltage drop across the resistor would be in phase w
hodyreva [135]

Answer: True

Explanation:

4 0
2 years ago
Market research is a good place to start the design process and usually involves asking questions about consumers.
ElenaW [278]
what is your question?
4 0
2 years ago
A surveyor knows an elevation at Catch Basin to be elev=2156.77 ft. The surveyor takes a BS=2.67 ft on a rod at BM Catch Basin a
fenix001 [56]

Answer:

the elevation at point X is 2152.72 ft

Explanation:

given data

elev = 2156.77 ft

BS = 2.67 ft

FS = 6.72 ft

solution

first we get here height of instrument that is

H.I = elev + BS   ..............1

put here value

H.I =  2156.77 ft + 2.67 ft  

H.I = 2159.44 ft

and

Elevation at point (x) will be

point (x)  = H.I - FS   .............2

point (x)  = 2159.44 ft  - 6.72 ft

point (x)  = 2152.72 ft

3 0
3 years ago
Need help solving math problem using integration
notka56 [123]
Ummm did you try to add or subtract and multiply or divide that can get your answer
8 0
2 years ago
Other questions:
  • A gear and shaft with nominal diameter of 34 mm are to be assembled with a medium drive fit (H7/s6). The gear has a hub, with an
    9·1 answer
  • It is not a practical proposition to take direct measurements in nanoscale, but we can estimate variations in position and momen
    15·1 answer
  • Which one of the following faults cause the coffee in a brewer to keep boiling after the brewing cycle is finished?
    7·1 answer
  • What is the modulus of resilience for a tensile test specimen with a nearly linear elastic region if the yield strength is 500MP
    6·2 answers
  • The mechanical advantage of a screw is always ____________________ than/to 1. Question 5 options: less, greater, equal, none of
    7·1 answer
  • A three-phase Y-connected 50-Hz two-pole synchronous machine has a stator with 2000 turns of wire per phase. What rotor flux wou
    11·1 answer
  • The pressure less than atmospheric pressure is known as:
    6·1 answer
  • T
    11·1 answer
  • 14. An engine is brought into the shop with a
    15·1 answer
  • How do all the cars work to move?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!