1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RideAnS [48]
3 years ago
12

2. A counter flow tube-shell heat exchanger is used to heat a cold water stream from 18 to 78oC at a flow rate of 1 kg/s. Heatin

g is provided by a superhot water stream in the shell at 160oC flowing at 1.8 kg/s. Inner tube diameter is 1.4 cm while the tube wall is very thin. Overall heat transfer coefficient based on the inner tube is 630 W/m2 K. Assume constant water properties in the cold stream; use values at 320K. The cp value for the hot stream is 4.30 kJ/kg K. (30%) a. Determine the length of the heat exchanger using the ε-NTU method; b. Estimate the cold side heat transfer coefficient.

Engineering
1 answer:
Anastaziya [24]3 years ago
5 0

Answer:

a) L = 220\,m, b) U_{o} \approx 0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C}

Explanation:

a) The counterflow heat exchanger is presented in the attachment. Given that cold water is an uncompressible fluid, specific heat does not vary significantly with changes on temperature. Let assume that cold water has the following specific heat:

c_{p,c} = 4.186\,\frac{kJ}{kg\cdot ^{\textdegree}C}

The effectiveness of the counterflow heat exchanger as a function of the capacity ratio and NTU is:

\epsilon = \frac{1-e^{-NTU\cdot(1-c)}}{1-c\cdot e^{-NTU\cdot (1-c)}}

The capacity ratio is:

c = \frac{C_{min}}{C_{max}}

c = \frac{(1\,\frac{kg}{s} )\cdot(4.186\,\frac{kW}{kg^{\textdegree}C} )}{(1.8\,\frac{kg}{s} )\cdot(4.30\,\frac{kW}{kg^{\textdegree}C} )}

c = 0.541

Heat exchangers with NTU greater than 3 have enormous heat transfer surfaces and are not justified economically. Let consider that NTU = 2.5. The efectiveness of the heat exchanger is:

\epsilon = \frac{1-e^{-(2.5)\cdot(1-0.541)}}{1-(2.5)\cdot e^{-(2.5)\cdot (1-0.541)}}

\epsilon \approx 0.824

The real heat transfer rate is:

\dot Q = \epsilon \cdot \dot Q_{max}

\dot Q = \epsilon \cdot C_{min}\cdot (T_{h,in}-T_{c,in})

\dot Q = (0.824)\cdot (4.186\,\frac{kW}{^{\textdegree}C} )\cdot (160^{\textdegree}C-18^{\textdegree}C)

\dot Q = 489.795\,kW

The exit temperature of the hot fluid is:

\dot Q = \dot m_{h}\cdot c_{p,h}\cdot (T_{h,in}-T_{h,out})

T_{h,out} = T_{h,in} - \frac{\dot Q}{\dot m_{h}\cdot c_{p,h}}

T_{h,out} = 160^{\textdegree}C + \frac{489.795\,kW}{(7.74\,\frac{kW}{^{\textdegree}C} )}

T_{h,out} = 96.719^{\textdegree}C

The log mean temperature difference is determined herein:

\Delta T_{lm} = \frac{(T_{h,in}-T_{c, out})-(T_{h,out}-T_{c,in})}{\ln\frac{T_{h,in}-T_{c, out}}{T_{h,out}-T_{c,in}} }

\Delta T_{lm} = \frac{(160^{\textdegree}C-78^{\textdegree}C)-(96.719^{\textdegree}C-18^{\textdegree}C)}{\ln\frac{160^{\textdegree}C-78^{\textdegree}C}{96.719^{\textdegree}C-18^{\textdegree}C} }

\Delta T_{lm} \approx 80.348^{\textdegree}C

The heat transfer surface area is:

A_{i} = \frac{\dot Q}{U_{i}\cdot \Delta T_{lm}}

A_{i} = \frac{489.795\,kW}{(0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C} )\cdot(80.348^{\textdegree}C) }

A_{i} = 9.676\,m^{2}

Length of a single pass counter flow heat exchanger is:

L =\frac{A_{i}}{\pi\cdot D_{i}}

L = \frac{9.676\,m^{2}}{\pi\cdot (0.014\,m)}

L = 220\,m

b) Given that tube wall is very thin, inner and outer heat transfer areas are similar and, consequently, the cold side heat transfer coefficient is approximately equal to the hot side heat transfer coefficient.

U_{o} \approx 0.63\,\frac{kW}{m^{2}\cdot ^{\textdegree}C}

You might be interested in
What do you mean by decentralization??​
Marina CMI [18]

Explanation:

Decentralization—the transfer of authority and responsibility for public functions from the central government to subordinate or quasi-independent government organizations and/or the private sector—is a complex multifaceted concept.

5 0
2 years ago
Read 2 more answers
How to comment other people
Mekhanik [1.2K]
What you mean?? .!.!.!.!!.
4 0
3 years ago
Read 2 more answers
Refrigerant-134a enters the expansion valve of a refrigeration system at 120 psia as a saturated liquid and leaves at 20 psia. D
Shkiper50 [21]

Solution :

$P_1 = 120 \ psia$

$P_2 = 20 \ psia$

Using the data table for refrigerant-134a at P = 120 psia

$h_1=h_f=40.8365 \ Btu/lbm$

$u_1=u_f=40.5485 \ Btu/lbm$

$T_{sat}=87.745^\circ  F$

∴ $h_2=h_1=40.8365 \ Btu/lbm$

For pressure, P = 20 psia

$h_{2f} = 11.445 \ Btu/lbm$

$h_{2g} = 102.73 \ Btu/lbm$

$u_{2f} = 11.401 \ Btu/lbm$

$u_{2g} = 94.3 \ Btu/lbm$

$T_2=T_{sat}=-2.43^\circ  F$

Change in temperature, $\Delta T = T_2-T_1$

                                         $\Delta T = -2.43-87.745$

                                           $\Delta T=-90.175^\circ  F$

Now we find the quality,

$h_2=h_f+x_2(h_g-h_f)$

$40.8365=11.445+x_2(91.282)$

$x_2=0.32198$

The final energy,

$u_2=u_f+x_2.u_{fg}$

   $=11.401+0.32198(82.898)$

   $=38.09297 \ Btu/lbm$

Change in internal energy  

$\Delta u= u_2-u_1$

   = 38.09297-40.5485

  = -2.4556        

5 0
3 years ago
1. What is the maximum value of the linear density in a crystalline solid (linear density defined as the fraction of the line le
insens350 [35]
Number three number three number three I’m not 100% sure though
4 0
3 years ago
When the Moon is in the position shown, how would the Moon look to an observer on the North Pole?
kirill115 [55]

Answer:

cant see the moon sorry dude

5 0
3 years ago
Other questions:
  • Compute the fundamental natural frequency of the transverse vibration of a uniform beam of rectanqular cross section, with one e
    11·2 answers
  • A 300 mm long steel bar with a square cross section (25 mm per edge) is pulled in tension with a load of 83,051 N , and experien
    10·1 answer
  • PLZ HURRY IM ON A TIMER
    6·1 answer
  • Write a single statement that prints outsideTemperature with 2 digits in the fraction
    8·1 answer
  • A ship tows a submerged cylinder, 1.5 m in diameter and 22 m long, at U = 5 m/s in fresh water at 20°C. Estimate the towing powe
    14·1 answer
  • Lets try to get to 100 sub before charismas day <br> Jordan Gracia 32 sub and 5 videos
    13·2 answers
  • Your sprayer has a 60-foot wide boom with 36 nozzles along this 60-foot length. Your spray speed is 4.5 miles per hour and you w
    15·1 answer
  • Limited time only for christmas give yourself free 100 points Thats what im talking about
    5·2 answers
  • It is acceptable to mix used absorbents.
    15·1 answer
  • If an internally piloted DCV does not shift, you should use a gauge to _____. A.check the pilot line pressure b. check the inlet
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!