Answer: 624 Hz
Explanation:
If the ratio of the inductive reactance to the capacitive reactance, is 6.72, this means that it must be satified the following expression:
ωL / 1/ωC = 6.72
ω2 LC = 6.72 (1)
Now, at resonance, the inductive reactance and the capacitive reactance are equal each other in magnitude, as follows:
ωo L = 1/ωoC → ωo2 = 1/LC
So, as we know the resonance frequency, we can replace LC in (1) as follows:
ω2 / ωo2 = 6.72
Converting the angular frequencies to frequencies, we have:
4π2 f2 / 4π2 fo2 = 6.72
Simplifying and solving for f, we have:
f = 240 Hz . √6.72 = 624 Hz
As the circuit is inductive, f must be larger than the resonance frequency.
Answer:
<em>Both energies are equal when the rock has fallen 20 m or equivalently when it is at a height of 20 m.</em>
Explanation:
<u>Potential and Kinetic Energy</u>
The gravitational potential energy is the energy an object has due to its height above the ground. The formula is

Where:
m = mass of the object
g = acceleration of gravity (9.8~m/s^2)
h = height
Note we can also use the object's weight W=mg into the formula:

The kinetic energy is the energy an object has due to its speed:

Where v is the object's speed.
Initially, the object has no kinetic energy because it's assumed at rest.
The W=30 N rock falls from a height of h=40 m, thus:

Since the sum of the kinetic and potential energies is constant:
U' + K' = 1,200 J
Here, U' and K' are the energies at any point of the motion. Since both must be the same:
U' = K' = 600 J
U'=Wh'=600
Solving for h':

Both energies are equal when the rock has fallen 20 m or equivalently when it is at a height of 20 m.
Answer:
C) gravity separated from the unified force, strong force separated from the unified force, inflationary expansion occurred, electromagnetic and weak forces separated from the unified force, quarks and electrons formed
To solve the problem, use Kepler's 3rd law :
T² = 4π²r³ / GM
Solved for r :
r = [GMT² / 4π²]⅓
but first covert 6.00 years to seconds :
6.00years = 6.00years(365days/year)(24.0hours/day)(6...
= 1.89 x 10^8s
The radius of the orbit then is :
r = [(6.67 x 10^-11N∙m²/kg²)(1.99 x 10^30kg)(1.89 x 10^8s)² / 4π²]⅓
= 6.23 x 10^11m
Answer:
the umbra and penumbra
Explanation:
The two parts of a shadow are the umbra and penumbra.
A shadow is an expression formed when light from a source is cut blocked by an opaque body.
Most shadows are made up of two parts, umbra and penumbra.
- The umbra is the darkest, and the innermost part of a shadow.
- In the penumbra, only a portion of the light source is blocked. It is more of like a partial shadow.
The umbra is directly formed by light which impinges on an opaque body and it completely cut off.