Answer:
search-icon-image
Class 9
>>Maths
>>Quadrilaterals
>>Quadrilaterals and Their Various Types
>>In Fig. 6.43, if PQ PS, PQ∥ SR, SQR = 2
Question
Bookmark
In Fig. 6.43, if PQ⊥PS,PQ∥SR,∠SQR=28
0
and ∠QRT=65
0
, then find the values of x and y.
463685
expand
Medium
Solution
verified
Verified by Toppr
Given, PQ⊥PS,PQ∥SR,∠SQR=28
∘
,∠QRT=65
∘
According to the question,
x+∠SQR=∠QRT (Alternate angles as QR is transversal.)
⇒x+28
∘
=65
∘
⇒x=37
∘
Also ∠QSR=x
⇒∠QSR=37
∘
Also ∠QRS+∠QRT=180
∘
(Linear pair)
⇒∠QRS+65
∘
=180
∘
⇒∠QRS=115
∘
Now, ∠P+∠Q+∠R+∠S=360
∘
(Sum of the angles in a quadrilateral.)
⇒90
∘
+65
∘
+115
∘
+∠S=360
∘
⇒270
∘
+y+∠QSR=360
∘
⇒270
∘
+y+37
∘
=360
∘
⇒307
∘
+y=360
∘
⇒y=53
∘
Step-by-step explanation:
please mark me as brainlist please
Answer:
see explanation
Step-by-step explanation:
Given x varies directly as y then the equation relating them is
x = ky ← k is the constant of variation
To find k use the condition x = 9 when y = 4
k =
=
= 2.25
x = 2.25y ← equation of variation
When y = 8, then
x = 2.25 × 8 = 18
Answer:
the closest the sales man can fit in a box is 96lbs without going over. so therefore, no, he cannot fulfill the order.
Let c > 0. Then split the integral at t = c to write

By the FTC, the derivative is
![\displaystyle \frac{df}{dx} = \left(\frac1x + \sin\left(\frac1x\right)\right) \frac{d}{dx}\left[\frac1x\right] - (\ln(x) + \sin(\ln(x))) \frac{d}{dx}\left[\ln(x)\right] \\\\ = -\frac1{x^2} \left(\frac1x + \sin\left(\frac1x\right)\right) - \frac1x (\ln(x) + \sin(\ln(x))) \\\\ = -\frac1{x^3} - \frac{\sin\left(\frac1x\right)}{x^2} - \frac{\ln(x)}x - \frac{\sin(\ln(x))}x \\\\ = -\frac{1 + x\sin\left(\frac1x\right) + x^2\ln(x) + x^2 \sin(\ln(x))}{x^3}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdf%7D%7Bdx%7D%20%3D%20%5Cleft%28%5Cfrac1x%20%2B%20%5Csin%5Cleft%28%5Cfrac1x%5Cright%29%5Cright%29%20%5Cfrac%7Bd%7D%7Bdx%7D%5Cleft%5B%5Cfrac1x%5Cright%5D%20-%20%28%5Cln%28x%29%20%2B%20%5Csin%28%5Cln%28x%29%29%29%20%5Cfrac%7Bd%7D%7Bdx%7D%5Cleft%5B%5Cln%28x%29%5Cright%5D%20%5C%5C%5C%5C%20%3D%20-%5Cfrac1%7Bx%5E2%7D%20%5Cleft%28%5Cfrac1x%20%2B%20%5Csin%5Cleft%28%5Cfrac1x%5Cright%29%5Cright%29%20-%20%5Cfrac1x%20%28%5Cln%28x%29%20%2B%20%5Csin%28%5Cln%28x%29%29%29%20%5C%5C%5C%5C%20%3D%20-%5Cfrac1%7Bx%5E3%7D%20-%20%5Cfrac%7B%5Csin%5Cleft%28%5Cfrac1x%5Cright%29%7D%7Bx%5E2%7D%20-%20%5Cfrac%7B%5Cln%28x%29%7Dx%20-%20%5Cfrac%7B%5Csin%28%5Cln%28x%29%29%7Dx%20%5C%5C%5C%5C%20%3D%20-%5Cfrac%7B1%20%2B%20x%5Csin%5Cleft%28%5Cfrac1x%5Cright%29%20%2B%20x%5E2%5Cln%28x%29%20%2B%20x%5E2%20%5Csin%28%5Cln%28x%29%29%7D%7Bx%5E3%7D)