The graphs that are density curves for a continuous random variable are: Graph A, C, D and E.
<h3>How to determine the density curves?</h3>
In Geometry, the area of the density curves for a continuous random variable must always be equal to one (1). Thus, we would test this rule in each of the curves:
Area A = (1 × 5 + 1 × 3 + 1 × 2) × 0.1
Area A = 10 × 0.1
Area A = 1 sq. units (True).
For curve B, we have:
Area B = (3 × 3) × 0.1
Area B = 9 × 0.1
Area B = 0.9 sq. units (False).
For curve C, we have:
Area C = (3 × 4 - 2 × 1) × 0.1
Area C = 10 × 0.1
Area C = 1 sq. units (False).
For curve D, we have:
Area D = (1 × 4 + 1 × 3 + 1 × 2 + 1 × 1) × 0.1
Area D = 10 × 0.1
Area D = 1 sq. units (True).
For curve E, we have:
Area E = (1/2 × 4 × 5) × 0.1
Area E = 10 × 0.1
Area E = 1 sq. units (True).
Read more on density curves here: brainly.com/question/26559908
#SPJ1
Taxable income = 3854
they have been taking taxes out in the amount of 344 for 12 months.....344* 12 = 4128....so they took out too much....so there is a refund of 4128 - 3854 =
274 refund
the answer is 5 tickets for 4$ just because they're cheaper.
12.5 is your answer! Hope I helped! :D
Answer:
The answer is 3 units apart.
Step-by-step explanation:
The points are (1,9) and (4,9). The y-coordinates are the same. The x-coordinates are different. To find the difference between them, you must subtract them. 4-1=3, so the points are 3 units apart!